Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (6): 720-730    DOI: 10.3785/j.issn.1006-754X.2022.00.090
Optimization Design     
Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure
Zheng-feng ZHANG1,2(),Xiao-yu SONG3,Xiao-lei YUAN1(),Wen-juan CHEN2,Wei-dong ZHANG4
1.School of Automobile, Chang’an University, Xi’an 710064, China
2.Shaanxi Automobile Holding Group Co. , Ltd. , Xi’an 710042, China
3.Chinalco Material Application Research Institute Co. , Ltd. , Beijing 102209, China
4.Shanghai Jieneng Automobile Technology Co. , Ltd. , Shanghai 201804, China
Download: HTML     PDF(3798KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Lightweight is an important way to make automobile industry develop towards safety, energy conservation and environmental protection. The Al/CFRP (carbon fiber reinforced plastic) hybrid material can improve the lightweight effect while taking into account the material cost and structural crashworthiness. In order to explore the best combination mode of Al/CFRP hybrid thin-walled structure with square cross section, firstly, Al square tubes, CFRP square tubes and Al/CFRP hybrid square tubes were prepared, and quasi-static crushing experiments were carried out. Then, the finite element model that could accurately simulate the crushing response of Al/CFRP hybrid square tube was established. Finally, the multi-objective certainty and reliability optimization design for the Al/CFRP hybrid square tube was carried out by combining experimental design method, agent model technique, multi-objective optimization algorithm and Monte Carlo simulation technology, and the reliability optimization solution with good effect was verified by simulation. The quasi-static crushing experiment results showed that the Al/CFRP hybrid square tube had excellent crashworthiness; the optimization results showed that the constraint reliability of the reliability optimization solution was 10.96% higher than that of the certainty optimization solution, which greatly reduced the failure probability and had stronger practicability. The research results are expected to provide a reference for the optimal design of Al/CFRP hybrid thin-walled energy-absorbing components.



Key wordsAl/CFRP (carbon fiber reinforced plastic) hybrid material      finite element analysis      reliability      optimization design     
Received: 17 May 2022      Published: 06 January 2023
CLC:  TB 333  
Corresponding Authors: Xiao-lei YUAN     E-mail: zhangzf1979@yeah.net;yuanxiaolei@chd.edu.cn
Cite this article:

Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure. Chin J Eng Design, 2022, 29(6): 720-730.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.090     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I6/720


Al/CFRP混合薄壁结构耐撞性能可靠性优化设计

轻量化是实现汽车产业向安全、节能、环保发展的一个重要途径。Al/CFRP(carbon fiber reinforced plastic,碳纤维增强复合材料)混合材料能够在提升轻量化效果的同时兼顾材料成本和结构耐撞性能。为探索方形截面Al/CFRP混合薄壁结构的最佳组合方式,首先,制备了Al方管、CFRP方管和Al/CFRP混合方管,并开展准静态压溃实验。然后,建立能够精确模拟Al/CFRP混合方管压溃响应的有限元模型。最后,将试验设计方法、代理模型技术、多目标优化算法和蒙特卡罗模拟技术相结合,对Al/CFRP混合方管分别进行多目标确定性与可靠性优化设计,并对效果较好的可靠性优化解进行仿真验证。准静态压溃实验结果表明,Al/CFRP混合方管具有优异的耐撞性能;优化结果表明,可靠性优化解的约束可靠度相比于确定性优化解提高了10.96%,大大降低了失效概率,具有更强的实用性。研究结果有望对Al/CFRP混合薄壁吸能构件的优化设计提供参考。


关键词: Al/CFRP(碳纤维增强复合材料)混合材料,  有限元分析,  可靠性,  优化设计 
Fig.1 Schematic diagram of geometric configuration of Al/CFRP hybird square tube
试样Al管厚度/mmCFRP铺层数/层
Al方管1
CFRP方管8
Al/CFRP混合方管18
Table 1 Preparation scheme of each sample
Fig.2 Preparation process of Al/CFRP hybird square tube
试样CFRP铺层数/层

外径

D/mm

长度

L/mm

厚度

T/mm

质量

m/g

Al方管40.0120.21.0046.396
CFRP方管840.5120.92.0350.601
Al/CFRP混合方管840.0120.13.0794.762
Table 2 Final geometric dimension parameters of each sample
Fig.3 Axial quasi-static crushing experimental device
Fig.4 Crushing process and load‒displacement curve of each sample
Fig.5 Implementation flow of CFRP layer failure based on user subroutine (VUMAT) in ABAQUS/Explicit
参数数值
tn0/MPa54
ts0/MPa70
tt0/MPa70
Gnc/MPa504
Gsc/MPa1 556
Gtc/MPa1 556
η2.284
Table 3 Parameters of CFRP interlaminar failure model
参数数值
密度/(g/cm3)2.7
弹性模量/MPa69.87
泊松比0.37
屈服应力/MPa143.1
Table 4 AA6061-O aluminum alloy material parameters
参数数值
E11/GPa57
E22/GPa57
v12v210.067
X11+/MPa679
X22+/MPa679
X11-/MPa512
X22-/MPa512
Table 5 Elastic parameters and strength parameters of CFRP
参数数值
G12/MPa8 400
S0/MPa71
σ?y0/MPa115
r120.154
C3 080
a0.810 6
Table 6 In-plane shear parameters of CFRP
参数数值
Gf1+155
Gf1-255
Gf2+155
Gf2-255
Table 7 In-plane damage fracture parameters of CFRP
Fig.6 Finite element model for axial crushing of Al/CFRP hybird square tube
Fig.7 Comparison between simulation and experimental results of axial crushing of Al/CFRP hybrid square tube
对比项We/JWs/(J/g)Fmax/kNFave/kNλc
相对误差/%6.176.131.855.894.68
实验值3 444.7436.3566.8743.070.64
仿真值3 657.4738.5868.1145.610.67
Table 8 Comparison between simulation and experimental results of crashworthiness index of Al/CFRP hybrid square tube
样本点设计变量响应
TAl/mmθ1/(°)θ2/(°)θ3/(°)θ4/(°)Fmax/kNWs/(J/g)λc
11.47183571.3928.790.58
21.317331370.5631.740.63
30.63907451.6438.950.75
?????????
580.725023355.3338.890.74
591.11222221060.5938.180.81
601.5112404380.0931.740.59
Table 9 Experimental design sample points and responses of Al/CFRP hybrid square tube
耐撞性能指标代理模型构建方法精度评价指标
R2RMSE
FmaxRSM0.911 80.105 6
Kriging0.831 40.116 7
RBF0.753 20.249 6
WsRSM0.689 30.345 6
Kriging0.904 70.100 2
RBF0.758 30.255 2
λcRSM0.806 50.185 6
Kriging0.926 30.099 8
RBF0.796 50.213 5
Table 10 Accuracy comparison of agent models for crashworthiness indexes of Al/CFRP hybrid square tube based on different methods
Fig.8 Multi-objective certainty optimization process of Al/CFRP hybrid square tube
Fig.9 Comparison of Pareto frontier optimal solution sets of multi-objective certainty optimization for Al/CFRP hybrid square tube based on different optimization algorithms
设计变量与耐撞性能指标数值
TAl/mm0.59
θ1/(°)5.37
θ2/(°)43.92
θ3/(°)22.46
θ4/(°)44.79
Fmax/kN38.24
Ws/(J/g)36.56
λc0.71
Table 11 Optimal solution of multi-objective certainty optimization for Al/CFRP hybrid square tube
设计变量概率分布相关系数初始值取值范围
上限下限
TAl/mm正态分布0.050.590.52
θ1/(°)正态分布0.055.37045
θ2/(°)正态分布0.0543.92045
θ3/(°)正态分布0.0522.46045
θ4/(°)正态分布0.0544.79045
Table 12 Initial value and probability distribution of design variables of multi-objective reliability optimization for Al/CFRP hybrid square tube
Fig.10 Multi-objective reliability optimization process of Al/CFRP hybrid square tube based on NSGA-Ⅱ
Fig.11 Comparison of Pareto frontier optimal solution sets of certainty and reliability optimization for Al/CFRP hybrid square tube
设计变量、优化目标及约束确定性优化解可靠性优化解
TAl/mm0.590.79
θ1/(°)5.3716.62
θ2/(°)43.9225.70
θ3/(°)22.4620.99
θ4/(°)44.7937.97
Fmax/kN38.2442.11
Ws/(J/g)36.5635.75
λc0.710.76
可靠度/%87.3698.32
Table 13 Comparison of certainty and reliability optimal solutions of Al/CFRP hybrid square tube
Fig.12 Simulation results of Al/CFRP hybrid square tube crushing process based on reliability optimal solution
Fig.13 Simulation results of deformation mode and load‒displacement curve of Al/CFRP hybrid square tube based on reliability optimal solution
对比项Fmax/kNWs /(J/g)λc
相对误差/%-13.472.523.79
代理模型预测结果42.1135.750.76
有限元仿真结果48.6734.870.79
Table 14 Comparison of crashworthiness indexes of Al/CFRP hybrid square tube based on agent model and finite element simulation
[1]   朱国华.金属/碳纤维混合材料薄壁结构耐撞性研究[D].长沙:湖南大学,2018:14-32. doi:10.1016/j.tws.2018.02.029
ZHU Guo-hua. On crashworthiness of metal/CFRP hybrid thin-walled structures[D]. Changsha: Hunan University, 2018: 14-32.
doi: 10.1016/j.tws.2018.02.029
[2]   SUN G, YU H, WANG Z, et al. Energy absorption mechanics and design optimization of CFRP/alumimun hybrid structures for tra+nsverse loading[J]. International Journal of Mechanical Sciences, 2019, 150: 767-783.
[3]   ZHU G, SUN G, LI G, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures, 2018, 184: 41-55.
[4]   SHI P, YU Q, HUANG R, et al. Crashworthy and performance-cost characteristics of aluminum-CFRP hybrid tubes under quasi-static axial loading[J]. Fibers & Polymers, 2019, 20(2): 384-397.
[5]   孙光永,李光耀,王建华,等.可靠性优化设计在汽车构件耐撞性中的应用[J].计算机辅助设计与图形学学报, 2007,19(10):1308-1314. doi:10.3321/j.issn:1004-132X.2007.04.027
SUN Guang-yong, LI Guang-yao, WANG Jian-hua, et al. The application of reliability optimization design to automotive structural crashworthiness[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(10): 1308-1314.
doi: 10.3321/j.issn:1004-132X.2007.04.027
[6]   WANG Z, JIN X, LI Q, et al. On crashworthiness design of hybrid metal-composite structures[J]. International Journal of Mechanical Sciences, 2020, 171: 105380.
[7]   NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525.
[8]   MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface element[J]. Delamination Behaviour of Composites, 2008, 32(14): 367-386. doi:10.1177/002199839803201401
doi: 10.1177/002199839803201401
[9]   SOKOLINSKY V S. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1119-1126.
[10]   LIU Q, XING H, JU Y, et al. Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes [J]. Composite Structures, 2014, 117: 1-11.
[11]   ZHAO X, ZHU G, ZHOU C, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J]. Composite Structures, 2019, 22: 110920.
[12]   ZHU G, SUN G, YU H, et al. Energy-absorbing of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences, 2018, 135: 458-483.
[13]   ZHANG Y, LU M, SUN G, et al. On functionally graded composite structures for crashworthiness[J]. Composite Structures, 2015, 132: 393-405.
[14]   ESNAOLA A, ELGUEZABAL B, AURREKOETXEA J, et al. Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis[J]. Composites Part B: Engineering, 2016, 93: 56-66.
[15]   SUN G, CHEN D, HUO X, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures, 2018, 184: 110-124.
[16]   KANGMIN L, LIU Q, CUI Z, et al. Multiobjective optimization of perforated square CFRP tubes for crashworthiness[J]. Thin-Walled Structures, 2020, 149: 106628.
[17]   陈国栋.基于代理模型的多目标优化方法及其在车身设计中的应用[D].长沙:湖南大学,2012:12-40.
CHEN Guo-dong. Multi-objective optimization method based on metamodel and its applications in vehicle body design[D]. Changsha: Hunan University, 2012: 12-40.
[18]   SUN G, LI G, ZHOU S, et al. Crashworthiness design of vehicle by using multiobjective robust optimization[J]. Structural and Multidiplinary Optimization, 2011, 44(1): 99-110.
[19]   冯振宇,苏璇,赵彦强,等.含概率不确定性的复合材料吸能结构优化设计方法研究[J].振动与冲击,2019,38(11):101-109,139.
FENG Zhen-yu, SU Xuan, ZHAO Yan-qiang, et al. Optimization design method for energy-absorbing compositestructure with probabilistic uncertainty[J]. Journal of Vibration and Shock, 2019, 38(11): 101-109, 139.
[20]   鲍娣.某SUV白车身结构性能分析及可靠性优化设计[D].合肥:合肥工业大学,2019:38-68.
BAO Di. Structural performance analysis and reliability optimum design of a SUV body-in-white[D]. Hefei: Hefei University of Technology, 2019: 38-68.
[1] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chin J Eng Design, 2023, 30(5): 626-633.
[2] Yuchun KUANG,Hui ZHONG,Liangchun ZHONG. Design and research of screw motor with quasi circular-arc contour-pattern[J]. Chin J Eng Design, 2023, 30(5): 640-649.
[3] Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chin J Eng Design, 2023, 30(4): 467-475.
[4] Jianghao LI,Wensheng XIAO,Wentai YU,Hongyan WANG,Shunqing LIU,Youfu SUN. Reliability analysis and allocation research of ultra-deep water pile hammer system[J]. Chin J Eng Design, 2023, 30(4): 485-494.
[5] Hongjie GUO,Shuya LIANG,Wenhua CHEN,Liqiang ZHONG,Zhewen CHEN,Jiahui YAN. Research on influence of wire spring inclination angle on storage life of wire spring hole electrical connector[J]. Chin J Eng Design, 2023, 30(3): 390-398.
[6] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[7] San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator[J]. Chin J Eng Design, 2022, 29(6): 684-694.
[8] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chin J Eng Design, 2022, 29(6): 713-719.
[9] Jiang LIU,Zheng-ming XIAO,Long-long ZHANG,Wei-biao LIU. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chin J Eng Design, 2022, 29(6): 739-747.
[10] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chin J Eng Design, 2022, 29(3): 318-326.
[11] Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism[J]. Chin J Eng Design, 2022, 29(2): 161-167.
[12] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chin J Eng Design, 2021, 28(4): 504-510.
[13] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chin J Eng Design, 2021, 28(4): 415-425.
[14] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chin J Eng Design, 2021, 28(2): 227-234.
[15] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chin J Eng Design, 2021, 28(2): 203-209.