Optimization Design |
|
|
|
|
Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure |
Zheng-feng ZHANG1,2( ),Xiao-yu SONG3,Xiao-lei YUAN1( ),Wen-juan CHEN2,Wei-dong ZHANG4 |
1.School of Automobile, Chang’an University, Xi’an 710064, China 2.Shaanxi Automobile Holding Group Co. , Ltd. , Xi’an 710042, China 3.Chinalco Material Application Research Institute Co. , Ltd. , Beijing 102209, China 4.Shanghai Jieneng Automobile Technology Co. , Ltd. , Shanghai 201804, China |
|
|
Abstract Lightweight is an important way to make automobile industry develop towards safety, energy conservation and environmental protection. The Al/CFRP (carbon fiber reinforced plastic) hybrid material can improve the lightweight effect while taking into account the material cost and structural crashworthiness. In order to explore the best combination mode of Al/CFRP hybrid thin-walled structure with square cross section, firstly, Al square tubes, CFRP square tubes and Al/CFRP hybrid square tubes were prepared, and quasi-static crushing experiments were carried out. Then, the finite element model that could accurately simulate the crushing response of Al/CFRP hybrid square tube was established. Finally, the multi-objective certainty and reliability optimization design for the Al/CFRP hybrid square tube was carried out by combining experimental design method, agent model technique, multi-objective optimization algorithm and Monte Carlo simulation technology, and the reliability optimization solution with good effect was verified by simulation. The quasi-static crushing experiment results showed that the Al/CFRP hybrid square tube had excellent crashworthiness; the optimization results showed that the constraint reliability of the reliability optimization solution was 10.96% higher than that of the certainty optimization solution, which greatly reduced the failure probability and had stronger practicability. The research results are expected to provide a reference for the optimal design of Al/CFRP hybrid thin-walled energy-absorbing components.
|
Received: 17 May 2022
Published: 06 January 2023
|
|
Corresponding Authors:
Xiao-lei YUAN
E-mail: zhangzf1979@yeah.net;yuanxiaolei@chd.edu.cn
|
Al/CFRP混合薄壁结构耐撞性能可靠性优化设计
轻量化是实现汽车产业向安全、节能、环保发展的一个重要途径。Al/CFRP(carbon fiber reinforced plastic,碳纤维增强复合材料)混合材料能够在提升轻量化效果的同时兼顾材料成本和结构耐撞性能。为探索方形截面Al/CFRP混合薄壁结构的最佳组合方式,首先,制备了Al方管、CFRP方管和Al/CFRP混合方管,并开展准静态压溃实验。然后,建立能够精确模拟Al/CFRP混合方管压溃响应的有限元模型。最后,将试验设计方法、代理模型技术、多目标优化算法和蒙特卡罗模拟技术相结合,对Al/CFRP混合方管分别进行多目标确定性与可靠性优化设计,并对效果较好的可靠性优化解进行仿真验证。准静态压溃实验结果表明,Al/CFRP混合方管具有优异的耐撞性能;优化结果表明,可靠性优化解的约束可靠度相比于确定性优化解提高了10.96%,大大降低了失效概率,具有更强的实用性。研究结果有望对Al/CFRP混合薄壁吸能构件的优化设计提供参考。
关键词:
Al/CFRP(碳纤维增强复合材料)混合材料,
有限元分析,
可靠性,
优化设计
|
|
[1] |
朱国华.金属/碳纤维混合材料薄壁结构耐撞性研究[D].长沙:湖南大学,2018:14-32. doi:10.1016/j.tws.2018.02.029 ZHU Guo-hua. On crashworthiness of metal/CFRP hybrid thin-walled structures[D]. Changsha: Hunan University, 2018: 14-32.
doi: 10.1016/j.tws.2018.02.029
|
|
|
[2] |
SUN G, YU H, WANG Z, et al. Energy absorption mechanics and design optimization of CFRP/alumimun hybrid structures for tra+nsverse loading[J]. International Journal of Mechanical Sciences, 2019, 150: 767-783.
|
|
|
[3] |
ZHU G, SUN G, LI G, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures, 2018, 184: 41-55.
|
|
|
[4] |
SHI P, YU Q, HUANG R, et al. Crashworthy and performance-cost characteristics of aluminum-CFRP hybrid tubes under quasi-static axial loading[J]. Fibers & Polymers, 2019, 20(2): 384-397.
|
|
|
[5] |
孙光永,李光耀,王建华,等.可靠性优化设计在汽车构件耐撞性中的应用[J].计算机辅助设计与图形学学报, 2007,19(10):1308-1314. doi:10.3321/j.issn:1004-132X.2007.04.027 SUN Guang-yong, LI Guang-yao, WANG Jian-hua, et al. The application of reliability optimization design to automotive structural crashworthiness[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(10): 1308-1314.
doi: 10.3321/j.issn:1004-132X.2007.04.027
|
|
|
[6] |
WANG Z, JIN X, LI Q, et al. On crashworthiness design of hybrid metal-composite structures[J]. International Journal of Mechanical Sciences, 2020, 171: 105380.
|
|
|
[7] |
NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525.
|
|
|
[8] |
MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface element[J]. Delamination Behaviour of Composites, 2008, 32(14): 367-386. doi:10.1177/002199839803201401
doi: 10.1177/002199839803201401
|
|
|
[9] |
SOKOLINSKY V S. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1119-1126.
|
|
|
[10] |
LIU Q, XING H, JU Y, et al. Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes [J]. Composite Structures, 2014, 117: 1-11.
|
|
|
[11] |
ZHAO X, ZHU G, ZHOU C, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J]. Composite Structures, 2019, 22: 110920.
|
|
|
[12] |
ZHU G, SUN G, YU H, et al. Energy-absorbing of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences, 2018, 135: 458-483.
|
|
|
[13] |
ZHANG Y, LU M, SUN G, et al. On functionally graded composite structures for crashworthiness[J]. Composite Structures, 2015, 132: 393-405.
|
|
|
[14] |
ESNAOLA A, ELGUEZABAL B, AURREKOETXEA J, et al. Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis[J]. Composites Part B: Engineering, 2016, 93: 56-66.
|
|
|
[15] |
SUN G, CHEN D, HUO X, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures, 2018, 184: 110-124.
|
|
|
[16] |
KANGMIN L, LIU Q, CUI Z, et al. Multiobjective optimization of perforated square CFRP tubes for crashworthiness[J]. Thin-Walled Structures, 2020, 149: 106628.
|
|
|
[17] |
陈国栋.基于代理模型的多目标优化方法及其在车身设计中的应用[D].长沙:湖南大学,2012:12-40. CHEN Guo-dong. Multi-objective optimization method based on metamodel and its applications in vehicle body design[D]. Changsha: Hunan University, 2012: 12-40.
|
|
|
[18] |
SUN G, LI G, ZHOU S, et al. Crashworthiness design of vehicle by using multiobjective robust optimization[J]. Structural and Multidiplinary Optimization, 2011, 44(1): 99-110.
|
|
|
[19] |
冯振宇,苏璇,赵彦强,等.含概率不确定性的复合材料吸能结构优化设计方法研究[J].振动与冲击,2019,38(11):101-109,139. FENG Zhen-yu, SU Xuan, ZHAO Yan-qiang, et al. Optimization design method for energy-absorbing compositestructure with probabilistic uncertainty[J]. Journal of Vibration and Shock, 2019, 38(11): 101-109, 139.
|
|
|
[20] |
鲍娣.某SUV白车身结构性能分析及可靠性优化设计[D].合肥:合肥工业大学,2019:38-68. BAO Di. Structural performance analysis and reliability optimum design of a SUV body-in-white[D]. Hefei: Hefei University of Technology, 2019: 38-68.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|