Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (5): 640-649    DOI: 10.3785/j.issn.1006-754X.2023.00.045
Product Innovation Design     
Design and research of screw motor with quasi circular-arc contour-pattern
Yuchun KUANG1(),Hui ZHONG1(),Liangchun ZHONG2
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Sinopec Oilfield Equipment Corporation, Jingzhou 434000, China
Download: HTML     PDF(3279KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The screw motor is the power assembly of the screw drilling tool, and its cross-sectional shape directly affects its working performance. Good working performance is the design goal of screw motors. In order to obtain a screw motor with good working performance, the evaluation criteria of efficiency, sealing cavity reliability and stability were proposed according to the working principle and structural characteristics of the screw motor. Then, a three-dimensional finite element model of fluid-structure coupling of the screw motor was established, and the contact force change of the sealing cavity contact strip of the short-amplitude endocycloid screw motor under different load conditions was analyzed based on the explicit nonlinear transient dynamics method. Finally, based on the evaluation criteria for the efficiency of screw motors, a new screw motor with quasi circular-arc contour-pattern was designed to address the key factors affecting the efficiency of short-amplitude endocycloid screw motors, and the good working performance of this screw motor was proved by numerical simulation and experiment. The results showed that under the same load conditions, the sealing cavity of the screw motor with quasi circular-arc contour-pattern was more stable and reliable than that of the short-amplitude endocycloid screw motor, and it had better working performance under higher load conditions. The research results lay a foundation for the contour-pattern design of high-performance screw motors in the future.



Key wordsscrew motor      quasi circular-arc      sealing cavity      fluid-structure coupling      reliability      stability     
Received: 06 May 2022      Published: 03 November 2023
CLC:  TH 131.7  
Corresponding Authors: Yuchun KUANG     E-mail: swpikyc@126.com;1113694147@qq.com
Cite this article:

Yuchun KUANG,Hui ZHONG,Liangchun ZHONG. Design and research of screw motor with quasi circular-arc contour-pattern. Chin J Eng Design, 2023, 30(5): 640-649.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.045     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I5/640


类圆弧线型螺杆马达的设计与研究

螺杆马达是螺杆钻具的动力总成,其截面线型直接影响自身的各项工作性能。良好的工作性能是螺杆马达的设计目标。为获得工作性能良好的螺杆马达,首先,根据螺杆马达的工作原理和结构特点,提出了其效率、密封腔可靠性和稳定性的评价准则。然后,通过建立螺杆马达流固耦合三维有限元模型,基于显式非线性瞬态动力学方法分析了短幅内摆线螺杆马达密封腔接触带的接触力在不同负载工况下的变化情况。最后,基于螺杆马达效率的评价准则,针对影响短幅内摆线螺杆马达效率的关键因素,设计了一种类圆弧线型螺杆马达,并通过数值模拟和实验证明了该螺杆马达具有较好的工作性能。结果表明:在相同的负载工况下,相较于短幅内摆线螺杆马达,类圆弧线型螺杆马达密封腔的稳定性和可靠性更好,且在较高负载工况下具有更好的工作性能。研究结果为后续高性能螺杆马达的线型设计奠定了基础。


关键词: 螺杆马达,  类圆弧,  密封腔,  流固耦合,  可靠性,  稳定性 
Fig.1 Screw motor rotor center node and its displacement‒time history curve
Fig.2 Sealing cavity of screw motor and its force diagram
Fig.3 Schematic diagram of cross-sectional parameters of short-amplitude endocycloid screw motor
零部件设计参数量值
外壳外径Do172 mm
内径Di138 mm
壁厚δS17 mm
定子头数Ns8
大径Rs63.7 mm
小径rs50.9 mm
衬套最小厚度δmin5.3 mm
导程Ts914.4 mm
转子头数Nr7
偏心距e6.3 mm
大径Rr57.4 mm
小径rr44.4 mm
Table 1 Design parameters of short-amplitude endocycloid screw motor
Fig.4 Three-dimensional finite element model of short-amplitude endocycloid screw motor
Fig.5 Contact force and its difference of short-amplitude endocycloid screw motor under different load torques
负载扭矩/(N·m)理论转速/(r/min)实际转速/(r/min)压降1)/MPa容积效率/%机械效率/%总效率/%
200123.88112.850.5691.1019.2317.52
400113.300.7091.4630.6728.05
600111.890.8290.3239.4035.59
800110.250.9389.7846.3341.60
Table 2 Simulation results of working performance of short-amplitude endocycloid screw motor
Fig.6 Schematic diagram of quasi circular-arc contour-pattern for screw motor
Fig.7 Quasi circular-arc contour-pattern of 7/8 head screw motor
Fig.8 Contact force and its difference of screw motor with quasi circular-arc contour-pattern under different load torques
负载扭矩/(N·m)理论转速/(r/min)实际转速/(r/min)压降/MPa容积效率/%机械效率/%总效率/%
200123.88107.140.5386.4818.9516.39
400106.730.6486.1531.3927.40
600104.920.7184.6942.4335.94
800102.650.8082.8649.6042.10
Table 3 Simulation results of working performance of screw motor with quasi circular-arc contour-pattern
Fig.9 Comparison of sealing length for different screw motors
Fig.10 Experimental principle of working performance testing for screw motor
Fig.11 Working performance testing experimental bench for screw motor
负载扭矩/(N·m)理论转速/(r/min)实际转速/(r/min)压降/MPa容积效率/%机械效率/%总效率/%
200123.88113.840.5091.8920.0918.46
400112.770.5991.0331.8128.96
600111.320.6789.8644.9740.41
800109.010.7887.9951.5545.36
Table 4 Experimental results of working performance of screw motor with quasi circular-arc contour-pattern
[1]   韩传军,张杰,刘洋.常规螺杆钻具定子衬套的热力耦合分析[J].中南大学学报(自然科学版),2013,44(6):2311-2317.
HAN C J, ZHANG J, LIU Y. Thermal-structure coupling analysis for general stator lining of PDM[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2311-2317.
[2]   刘合,郝忠献,王连刚,等.人工举升技术现状与发展趋势[J].石油学报,2015,36(11):1441-1448. doi:10.7623/syxb201511014
LIU H, HAO Z X, WANG L G, et al. Current technical status and development trend of artificial lift[J]. Acta Petrolei Sinica, 2015, 36(11): 1441-1448.
doi: 10.7623/syxb201511014
[3]   孟凡林.新型型线单螺杆钻具的设计研究[D].青岛:中国石油大学(华东),2016:1-6.
MENG F L. Research and design of single screw drilling tool based on new molded lines[D]. Qingdao: China University of Petroleum (East China), 2016: 1-6.
[4]   苏义脑,谢竹庄.螺杆钻具马达线型分析基础及研究方法[J].石油机械,1985,13(6):10-20,9.
SU Y N, XIE Z Z. Basic research on the contour-pattern of downhole drilling screw motors[J]. China Petroleum Machinery, 1985, 13(6): 10-20, 9.
[5]   谢竹庄.单螺杆马达的普遍线型[J].石油学报,1997,18(2):98-103. doi:10.7623/syxb199702017
XIE Z Z. A general contour pattern of single screw hydraulic motors [J]. Acta Petrolei Sinica, 1997, 18(2): 98-103.
doi: 10.7623/syxb199702017
[6]   CHOI T H, KIM M S, LEE G S, et al. Design of rotor for internal gear pump using cycloid and circular-arc curves[J]. Journal of Mechanical Design, 2012, 134(1): 011005.
[7]   张强,张帆,饶岩岩,等.螺杆马达线型仿真计算及实现[J].机械研究与应用,2017,30(1):49-51,55. doi:10.16576/j.cnki.10074414.2017.01.015
ZHANG Q, ZHANG F, RAO Y Y, et al. Simulation calculation and realization for the profile line of positive displacement motor[J]. Mechanical Research & Application, 2017, 30(1): 49-51, 55.
doi: 10.16576/j.cnki.10074414.2017.01.015
[8]   李增亮,姜明云,禹超,等.准等壁厚螺杆钻具马达断面型线设计[J].石油矿场机械,2014,43(5):45-48. doi:10.3969/j.issn.1001-3482.2014.05.013
LI Z L, JIANG M Y, YU C, et al. Section line designing of screw drill motor with quasi thickness rubber bush[J]. Oil Field Equipment, 2014, 43(5): 45-48.
doi: 10.3969/j.issn.1001-3482.2014.05.013
[9]   万邦烈,曹玉德.短幅外摆线等距线型单螺杆式水力机械的评价指标及其参数的优选[J].石油机械,1989,17(3):1-11,5-6. doi:10.1007/BF02943119
WAN B L, CAO Y D. On assessment index and optimum parameters selection of curtate endocycloid isometric conjugate contour-pattern of hydraulic machinery[J]. China Petroleum Machinery, 1989, 17(3): 1-11, 5-6.
doi: 10.1007/BF02943119
[10]   赵娜.螺杆钻具马达线型优化设计方法的研究[D].沈阳:沈阳工业大学,2016:2-16.
ZHAO N. Screw drill motor linear optimization design method research[D]. Shenyang: Shenyang University of Technology, 2016: 2-16.
[11]   路玥.螺杆马达转子的线型分析[D].西安:西安石油大学,2010:2-9.
LU Y. Profile analysis of screw motor’s rotor[D]. Xi’an: Xi’an Shiyou University, 2010: 2-9.
[12]   童华,陈国银,祝效华.谐壁厚螺杆钻具橡胶衬套线型设计与仿真分析[J].系统仿真学报,2018,30(2):647-653.
TONG H, CHEN G Y, ZHU X H. Linear design and simulation analysis for harmonic-distance rubber bushing of PDM[J]. Journal of System Simulation, 2018, 30(2): 647-653.
[13]   祝效华,迟博.螺杆钻具定转子热力耦合行为[J].石油学报,2016,37(8):1047-1052. doi:10.7623/syxb201608011
ZHU X H, CHI B. Thermal-mechanical coupling behavior for screw drill stator and rotor[J]. Acta Petrolei Sinica, 2016, 37(8): 1047-1052.
doi: 10.7623/syxb201608011
[14]   向刚,卢秀德,宋丹.连续油管钻磨工艺螺杆马达特性分析及现场应用[J].钻采工艺,2014,37(1):75-77,15. doi:10.3969/J.ISSN.1006-768X.2014.01.22
XIANG G, LU X D, SONG D. Characteristics analysis and field application of screw motor used in coiled tubing milling technology[J]. Drilling & Production Technology, 2014, 37(1): 75-77, 15.
doi: 10.3969/J.ISSN.1006-768X.2014.01.22
[15]   苏义脑.螺杆钻具研究及应用[M].北京:石油工业出版社,2001:2-47.
SU Y N. Research and application of screw drilling tools[M]. Beijing: Petroleum Industry Press, 2001: 2-47.
[16]   张聪.螺杆马达啮合仿真模型与应用研究[D].成都:西南石油大学,2016:1-23.
ZHANG C. Research on meshing simulation model and application of screw motor[D]. Chengdu: Southwest Petroleum University, 2016: 1-23.
[17]   王勇帅.不可压缩流体流动及其耦合问题的时空有限元算法[D].上海:华东师范大学,2021:1-7.
WANG Y S. Time­space finite element methods for the incompressible fluid flows and their coupling problems [D]. Shanghai: East China Normal University, 2021: 1-7.
[18]   柳欢欢.基于流固耦合的螺杆马达动态仿真[D].武汉:华中科技大学,2017:11-29.
LIU H H. Dynamic simulation of positive displacement motor based on fluid-structure interaction[D]. Wuhan: Huazhong University of Science and Technology, 2017: 11-29.
[19]   单永平.螺杆马达流固耦合动态仿真及正交数值试验研究[D].武汉:华中科技大学,2019:34-45.
SHAN Y P. Fluid-structure coupling simulation and orthogonal numerical experiment of positive displacement motor[D]. Wuhan: Huazhong University of Science and Technology, 2019: 34-45.
[20]   郑道宽.螺杆马达的流固耦合仿真[D].武汉:华中科技大学,2015:23-31.
ZHENG D K. Fluid-solid coupling simulation of positive displacement motor[D]. Wuhan: Huazhong University of Science and Technology, 2015: 23-31.
[21]   黄晓霞.螺杆马达(PDM)流-固耦合动态仿真[D].武汉:华中科技大学,2013:12-32.
HUANG X X. Fluid-structure coupling dynamic simulation of positive displacement motor (PDM) [D]. Wuhan: Huazhong University of Science and Technology, 2013: 12-32.
[22]   王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2000:520-559.
WANG Z X, GUO D R. Introduction to special functions[M]. Beijing: Peking University Press, 2000: 520-559.
[23]   刘式适,刘式达.特殊函数[M].北京:气象出版社,1988:656-745. doi:10.1002/qj.49711448413
LIU S S, LIU S D. Special functions[M]. Beijing: China Meteorological Press, 1988: 656-745.
doi: 10.1002/qj.49711448413
[1] Jianghao LI,Wensheng XIAO,Wentai YU,Hongyan WANG,Shunqing LIU,Youfu SUN. Reliability analysis and allocation research of ultra-deep water pile hammer system[J]. Chin J Eng Design, 2023, 30(4): 485-494.
[2] Zhan YANG,Qipeng LI,Wei TANG,Kecheng QIN,Suifan CHEN,Kaidi WANG,Yang LIU,Jun ZOU. Design and analysis of small land-air deformable amphibious robot[J]. Chin J Eng Design, 2023, 30(3): 325-333.
[3] Hongjie GUO,Shuya LIANG,Wenhua CHEN,Liqiang ZHONG,Zhewen CHEN,Jiahui YAN. Research on influence of wire spring inclination angle on storage life of wire spring hole electrical connector[J]. Chin J Eng Design, 2023, 30(3): 390-398.
[4] Jie YANG,Zhuang-zhuang PENG,Shi-jie WANG,Cong MA,Long WANG,Guo-lin DUAN. Study on fuzzy neural network PID stability control for extrusion force of ceramic slurry 3D printer[J]. Chin J Eng Design, 2023, 30(1): 65-72.
[5] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.
[6] Jiang LIU,Zheng-ming XIAO,Long-long ZHANG,Wei-biao LIU. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chin J Eng Design, 2022, 29(6): 739-747.
[7] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chin J Eng Design, 2021, 28(4): 415-425.
[8] ZHONG Liang-chun, KUANG Yu-chun, SHU Feng, ZHANG Cong. Design method of screw motor interference considering the influence of pressure and temperature[J]. Chin J Eng Design, 2021, 28(3): 321-328.
[9] ZENG Guang, BIAN Qiang, ZHAO Chun-jiang, YIN Yu-feng, FENG Yi-jie. Analysis of stability and vibration characteristics of angular contact ball bearing cage under variable parameters[J]. Chin J Eng Design, 2020, 27(6): 735-743.
[10] HUANG Ze-hao, ZHANG Zhen-hua, HUANG Xu, LEI Wei. Analysis of time-varying characteristics of braking instability of drum brake[J]. Chin J Eng Design, 2019, 26(6): 714-721.
[11] WANG Ai-lun, LIU Le, LIU Qing-ya. Research on strength reliability of pull rod combined rotor based on Kriging surrogate model[J]. Chin J Eng Design, 2019, 26(4): 433-440.
[12] YANG Shao-pei, LI Meng, WANG De-sheng. Design of power monitoring instrument for agricultural unmanned aerial vehicle based on 15F2K60S2[J]. Chin J Eng Design, 2019, 26(3): 330-337.
[13] TANG Dong-lin, LI Mao-yang, DING Chao, WEI Zi-bing, HU Lin, YUAN Bo. Research on steering stability of wheeled wall-climbing robot[J]. Chin J Eng Design, 2019, 26(2): 153-161.
[14] CUI Guo-hua, CUI Kang-kang, WU Hai-miao, ZHANG Yan-wei, LIU Jian. Reliability analysis for pressing force of prestressed concrete cylinder pipe port grinding robot[J]. Chin J Eng Design, 2018, 25(6): 647-654.
[15] WU Yao-dong, LI Bao-kun, HAN Ying-ge, LIU Xiang-yang, LIU Kun. Analysis of stiffness model and variable stiffness characteristic of novel micro-nano probe[J]. Chin J Eng Design, 2018, 25(6): 711-717.