Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (4): 467-475    DOI: 10.3785/j.issn.1006-754X.2023.00.056
Mechanical Bionic Design     
Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps
Tao ZHANG1(),Kaisong WANG1(),Wei TANG2(),Kecheng QIN2,Yang LIU1,Yuhao SHI3,Jun ZOU2
1.School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
3.School of Mechanical Engineering, Yanshan University, Qinhuangdao 066000, China
Download: HTML     PDF(3314KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In response to solve the current issue of requiring external rigid body pump and valve for flexible actuator, a flexible bending actuator driven by an embedded electrohydrodynamic pump was designed based on the motion characteristics of human finger bending and grasping. A electrohydrodynamic pump was designed, and the influence of electrode plate spacing and electrode hole diameter on the output flow and pressure of the electrohydrodynamic pump were analyzed through experiments. The dimensions of the needle electrode, hole electrode and other components of electrohydrodynamic pump were determined, and a prototype of the electrohydrodynamic pump was developed. Multiple electrohydrodynamic pumps were connected in series and parallel, and the relationships between input voltage and output pressure, output flow were obtained. Two electrohydrodynamic pumps in series were determined to drive the flexible actuator; a mechanical model of the flexible actuator was established, and bending simulation and experiments were conducted on the flexible actuator. The relationship between the driving pressure and the bending angle of the flexible actuator was obtained, proving the good bending performance of the flexible actuator. The experimental, simulation, and theoretical values of the bending angle were relatively consistent, and the theoretical and simulation models could accurately describe the bending deformation of the flexible bending actuator. The high integration of the electrohydrodynamic pump and the flexible actuator allows the electrohydrodynamic pump to directly drive the bending deformation of the flexible actuator, achieving the portability of the flexible bending actuator.



Key wordselectrohydrodynamic pump      flexible bending actuator      electrode pair      finite element analysis     
Received: 23 May 2023      Published: 04 September 2023
CLC:  TH 3  
Corresponding Authors: Kaisong WANG,Wei TANG     E-mail: 2242770074@qq.com;6668978wks@163.com;weitang@zju.edu.cn
Cite this article:

Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps. Chin J Eng Design, 2023, 30(4): 467-475.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.056     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I4/467


电流体泵驱动的柔性弯曲执行器的设计及分析

针对目前柔性执行器需要外置的刚体泵和阀的问题,基于人手指弯曲抓握的运动特点,设计了一款由内嵌电流体泵驱动的柔性弯曲执行器。设计了电流体泵,通过实验分析了电流体泵的极板间距和电极孔直径对电流体泵输出流量和压强的影响,确定了电流体泵针电极、孔电极等部件的尺寸,研制了电流体泵样机。将多个电流体泵串联及并联,分别得出了输入电压与输出流量、输出压强的关系,确定了以2个电流体泵串联的方式来驱动软体执行器;建立了柔性执行器的力学模型,对柔性执行器进行了弯曲仿真和实验,得到了驱动压强与柔性执行器弯曲角度之间的关系,证明了柔性执行器具有良好的弯曲性能。弯曲角度的实验值、仿真值、理论值较一致,理论模型和仿真模型可以较为准确地描述柔性弯曲执行器的弯曲变形。电流体泵与柔性执行器高度集成,使电流体泵可以直接驱动柔性执行器弯曲变形,实现了柔性弯曲执行器的可携带性。


关键词: 电流体泵,  柔性弯曲执行器,  电极对,  有限元分析 
Fig.1 Structure of flexible bending actuator
部件质量
柔性执行器16.2
电流体泵外壳9.9
孔极板2.4
针极板1.2
连接器5.0
储液缸7.0
Table 1 Mass of various components of flexible bending actuator
Fig.2 Structure of flexible actuator
Fig.3 Structure and prototype of electrohydrodynamic pump
Fig.4 Schematic diagram of working principle of electrohydrodynamic pump
Fig.5 Influence of pinhole electrode parameters on the performance of electrohydrodynamic pump
Fig.6 Influence of multiple electrohydrodynamic pumps in series on the output pressure of electrohydrodynamic pump
Fig.7 Influence of multiple electrohydrodynamic pumps in parallel on the output flow of electrohydrodynamic pumps
参数量值
外壳尺寸(长×宽×高)29 mm×30 mm×18.5 mm
正极板尺寸(长×宽×高)26 mm×14.6 mm×1 mm
负极板尺寸(长×宽×高)26 mm×14.6 mm×1 mm
极板间距1 mm
电极孔直径2.0 mm
铜针直径0.3 mm
Table 2 Dimensions of various components of electrohydrodynamic pump
Fig.8 Structural dimensions of flexible actuator
Fig.9 Schematic diagram of single section chamber of flexible actuator after deformation
Fig.10 Bending simulation results of flexible actuator
Fig.11 Preparation process of flexible actuator
Fig.12 Assembly process of flexible bending actuator
Fig.13 Bending state of flexible actuator
Fig.14 Relationship curve between the output pressure of electrohydrodynamic pump and the bending angle of flexible actuator
[1]   CIANCHETTI M, CALISTI M, MARGHERI L, et al. Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot[J]. Bioinspiration and Biomimetics, 2015, 10(3): 035003. doi:10.1088/1748-3190/10/3/035003
doi: 10.1088/1748-3190/10/3/035003
[2]   DELLA S C, KATZSCHMANN R K, BICCHI A, et al. Hierarchical control of soft manipulators towards unstructured interactions[J]. The International Journal of Robotics Research, 2021, 40(1): 411-434. doi:10.1177/0278364920979367 .
doi: 10.1177/0278364920979367
[3]   TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3): 213-223. doi:10.1089/soro.2014.0008 .
doi: 10.1089/soro.2014.0008
[4]   徐丰羽,孟凡昌,范保杰,等.软体机器人驱动、建模与应用研究综述[J].南京邮电大学学报(自然科学版),2019,39(3):64-75. doi:10.14132/j.cnki.1673-5439.2019.03.010
XU F Y, MENG F C, FAN B J, et al. Review of driving methods, modeling and application in soft robots[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2019, 39(3): 64-75.
doi: 10.14132/j.cnki.1673-5439.2019.03.010
[5]   李三平,孙腾佳,袁龙强,等.气动软体采摘机械手设计及实验研究[J].工程设计学报,2022,29(6):684-694. doi:10.3785/j.issn.1006-754X.2022.00.085
LI S P, SUN T J, YUAN L Q, et al. Design and experimental research of pneumatic soft picking manipulator[J]. Chinese Journal of Engineering Design,2022, 29(6): 684-694.
doi: 10.3785/j.issn.1006-754X.2022.00.085
[6]   鲍官军,张亚琪,许宗贵,等.软体机器人气压驱动结构研究综述[J].高技术通讯,2019,29(5):467-479. doi:10.3772/j.issn.1002-0470.2019.05.008
BAO G J, ZHANG Y Q, XU Z G. Review on pneumatic-driven structure for soft robot[J]. Chinese High Technology Letters, 2019, 29(5): 467-479.
doi: 10.3772/j.issn.1002-0470.2019.05.008
[7]   RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521: 467-475. doi:10.1038/nature14543
doi: 10.1038/nature14543
[8]   BRIAN B K, HYUNGMIN C, HAEMIN L, et al. Exo-glove poly Ⅱ: A polymer-based soft wearable robot for the hand with a tendon-driven actuation system[J]. Soft Robotics, 2019, 6(2): 214-227. doi:10.1089/soro.2018.0006
doi: 10.1089/soro.2018.0006
[9]   LI S, WANG K W. Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning[J]. Smart Materials and Structures, 2015, 24(10): 105031. doi:10.1088/0964-1726/24/10/105031
doi: 10.1088/0964-1726/24/10/105031
[10]   SUTTER T M, DICKERSON M B, CREASY T S, et al. Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis[J]. Smart Materials and Structures, 2013, 22(9): 094022. doi:10.1088/0964-1726/22/9/094022
doi: 10.1088/0964-1726/22/9/094022
[11]   JI Z Y, YAN C Y, YU B, et al. Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator[J]. Advanced Materials Interfaces, 2017, 4(22): 1700629. doi:10.1002/admi.201700629
doi: 10.1002/admi.201700629
[12]   YUAN J K, NERI W, ZAKRI C, et al. Shape memory nanocomposite fibers for untethered high-energy microengines[J]. Science, 2019, 365: 155-158. doi:10.1126/science.aaw3722
doi: 10.1126/science.aaw3722
[13]   JUN Y N, SHUICHI W, TOSHIYUKI S, et al. Design of a variable-stiffness robotic hand using pneumatic soft rubber actuators[J]. Smart Materials and Structures, 2011, 20(10): 105015. doi:10.1088/0964-1726/20/10/105015
doi: 10.1088/0964-1726/20/10/105015
[14]   XIE Z, DOMEL A G, AN N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping.[J]. Soft Robotics, 2020, 7(5): 639-648. doi:10.1089/soro.2019.0082
doi: 10.1089/soro.2019.0082
[15]   FARIS O, MUTHUSAMY R, RENDA F, et al. Proprioception and exteroception of a soft robotic finger using neuromorphic vision-based sensing[J]. Soft Robot, 2023: 467-481. doi:10.1089/soro.2022.0030
doi: 10.1089/soro.2022.0030
[16]   YANG Y, WEI Y, LI Y T, et al. Novel design and three-dimensional printing of variable stiffness robotic grippers[J]. Journal of Mechanisms and Robotics, 2016, 8(6): 061010. doi:10.1115/1.4033728
doi: 10.1115/1.4033728
[17]   KANO I. Development of an EHD micropump to generate oscillating flow at low frequencies (effect of waveform on the EHD pumping)[J]. IEEE Transactions on Industry Applications, 2012, 48(3): 864-871. doi:10.1109/TIA.2012.2191249
doi: 10.1109/TIA.2012.2191249
[18]   CACUCCIOLO V, SHINTAKE J, KUWAJIMA Y, et al. Stretchable pumps for soft machines[J]. Nature, 2019, 572: 516-519. doi:10.1038/s41586-019-1479-6
doi: 10.1038/s41586-019-1479-6
[19]   SMITH M, CACUCCIOLO V, SHEA H. Fiber pumps for wearable fluidic systems[J]. Science, 2023, 379: 1327-1332. doi:10.1126/science.ade8654
doi: 10.1126/science.ade8654
[20]   TANG W, ZHANG C, ZHONG Y D, et al. Customizing a self-healing soft pump for robot[J]. Nature Communications, 2021, 12(1): 2247. doi:10.1038/s41467-021-22391-x
doi: 10.1038/s41467-021-22391-x
[21]   李斯盟,李清泉,王宝华,等.针-环与针-网电极液体EHD泵静态驱动力的实验研究[J].高电压技术,2015,41(6): 2108-2115. doi:10.13336/j.1003-6520.hve.2015.06.046
LI S M, LI Q Q, WANG B H. Experimental study on the static thrust of liquid EHD pump with single needle-ring and needle-mesh electrodes[J]. High Voltage Engineering, 2015, 41(6): 2108-2115.
doi: 10.13336/j.1003-6520.hve.2015.06.046
[22]   HUANG W, XIAO J L, XU Z P. A variable structure pneumatic soft robot[J]. Scientific Reports, 2020, 10(1): 18778. doi:10.1038/s41598-020-75346-5
doi: 10.1038/s41598-020-75346-5
[23]   谢业平,李红军.常用硅胶材料软体气动夹爪夹持性能的仿真研究[J].浙江理工大学学报(自然科学版), 2021, 45(3):328-334. doi:10.3969/j.issn.1673-3851(n). 2021.03.006
XIE Y P, LI H J. The simulation of the clamping performance of soft pneumatic grippers made of common silicone materials[J]. Journal of Zhejiang Institute of Science and Technology, 2021, 45(3): 328-334.
doi: 10.3969/j.issn.1673-3851(n). 2021.03.006
[1] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chin J Eng Design, 2023, 30(5): 626-633.
[2] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[3] San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator[J]. Chin J Eng Design, 2022, 29(6): 684-694.
[4] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chin J Eng Design, 2022, 29(6): 713-719.
[5] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.
[6] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chin J Eng Design, 2022, 29(3): 318-326.
[7] Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism[J]. Chin J Eng Design, 2022, 29(2): 161-167.
[8] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chin J Eng Design, 2021, 28(4): 504-510.
[9] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chin J Eng Design, 2021, 28(2): 227-234.
[10] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chin J Eng Design, 2021, 28(1): 95-104.
[11] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chin J Eng Design, 2021, 28(1): 25-32.
[12] ZHOU Chao, WANG Yang, RUI Xiao-ming. Finite element analysis and experimental study on wind-induced swing of 500 kV transmission line jumper wire[J]. Chin J Eng Design, 2020, 27(6): 713-719.
[13] LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank[J]. Chin J Eng Design, 2020, 27(2): 182-190.
[14] LIU Zhao, YOU Hong-xin, SUN Liang, YANG Yu-ling, LIU Hua-qing. Design of suspended hydraulic transmission rotary detection platform for large spherical tank[J]. Chin J Eng Design, 2019, 26(3): 267-273.
[15] SONG Jian-hu. Vibration analysis of a data transmission antenna on high orbit satellite[J]. Chin J Eng Design, 2019, 26(3): 274-279.