Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 172-181    DOI: 10.3785/j.issn.1006-754X.2023.00.020
Optimization Design     
Research on matching design and optimization of drive motor of electric drive vibroseis
Qin LI(),Rui YAN,Zhiqiang HUANG,Gang LI
School of Mechatronics Engineering, Southwest Petroleum University, Chengdu 610500, China
Download: HTML     PDF(4175KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The higher performance requirements for the drive motor are put forward because of the complex operating environment of the electric drive vibroseis. Aiming at the power requirements of the vibroseis under driving and excitation conditions, the matching design of the drive motor's power parameters was carried out, and the main design parameters of the drive motor were determined; a 2D finite element model of the drive motor was established, the magnetic flux density characteristics and harmonic amplitude of the motor under no-load and rated operating conditions were studied using the subdomain method, and the law of harmonic distortion of the motor's magnetic flux was analyzed; the optimal design of the air gap length of the motor and the orthogonal optimization test of the motor rotor structure were carried out, and the optimal structural parameters of the rotor were obtained. Therefore, a motor prototype was developed. The results showed that the magnetic flux density waveform in the motor magnetic isolation bridge and the region between the the permanent magnet and the rotor edge was severely distorted; the high-order harmonics in the region between the permanent magnet and the rotor edge had a significant impact on the motor, the proportion of the third harmonic in the fundamental wave was as high as 83%; the efficiency of the optimized motor reached 96.8%. The research results provide a reference for the optimization of electric drive vibroseis.



Key wordselectric drive vibroseis      permanent magnet synchronous motor      parameter matching      finite element analysis      optimization     
Received: 17 June 2022      Published: 06 May 2023
CLC:  TE 91  
Cite this article:

Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis. Chin J Eng Design, 2023, 30(2): 172-181.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.020     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/172


电驱可控震源驱动电机匹配设计与优化研究

电驱可控震源复杂的工况环境对驱动电机的性能提出了较高的要求。针对可控震源在行驶和激振工况下的动力需求,开展了驱动电机动力参数匹配设计,确定了驱动电机的主要设计参数;建立了驱动电机的二维有限元模型,采用子域法研究了电机在空载、额定工况下的磁通密度特性和谐波幅值,分析了电机磁通谐波畸变规律;开展了电机气隙长度优化设计以及电机转子结构的正交优化试验,得到了转子最优结构参数,并研制了电机样机。结果表明:在电机隔磁桥、永磁体与转子边缘之间区域的磁通密度波形畸变严重;永磁体与转子边缘之间区域的高次谐波对电机的影响较大,其3次谐波在基波中的占比高达83%;优化后电机效率可达96.8%。研究结果为电驱可控震源的优化提供了参考。


关键词: 电驱可控震源,  永磁同步电机,  参数匹配,  有限元分析,  优化 
符号参数量值
m总质量14 000 kg
A迎风面积6.24 m2
α纵向坡度倾斜角26°
v最高车速18 km/h
CD空气阻力系数0.5
f滚动阻力系数0.06
Table 1 Basic parameters of vibroseis vehicle
符号参数量值
G额定出力2 000 N
M质量5 905 kg
S行程0.203 m
Table 2 Basic parameters of heavy hammer
符号参数量值
P额定功率350 kW
U额定电压380 V
I额定电流560 A
n额定转速1 500 r/min
T额定转矩1 700 N?m
η额定效率94%
Table 3 Power parameters of drive motor
参数量值参数量值
电机极数4极定子外径520 mm
定子槽数72槽转子内径110 mm
定子内径350 mm转子外径348.5 mm
Table 4 Structural parameters of drive motor
Fig.1 2D finite element model of drive motor
Fig.2 Mesh generation and boundary setting of model of drive motor
Fig.3 Regional division of drive motor
Fig.4 Magnetic flux density waveform in each region of drive motor under no-load and rated operating conditions
Fig.5 Harmonic amplitude of magnetic flux density in each region of driving motor
Fig.6 Proportion of high-order harmonics in each region of drive motor
Fig.7 Distribution cloud diagram of magnetic flux density of drive motor
Fig.8 Radial magnetic flux density of air gap under no-load operation
Fig.9 Harmonic amplitude of radial magnetic flux density of air gap under no-load operation
Fig.10 Variation curve of the fundamental and third harmonics of radial magnetic flux density of air gap with air gap length under no-load operation
Fig.11 Tangential magnetic flux density of air gap during no-load operation
Fig.12 Variation curve of the maximum tangential magnetic flux density of air gap with air gap length under no-load operation
Fig.13 Variation curve of motor efficiency with air gap length
Fig.14 Rotor structure of drive motor
方案编号Rib/mmO2/mmHRib/mm
1143411
2143512
3143613
4153412
5153513
6153611
7163413
8163511
9163612
Table 5 Orthogonal test scheme of motor rotor structure optimization
Fig.15 Orthogonal test results of motor rotor structure optimization
Fig.16 Motor prototype assembly and electric drive vibroseis
Fig.17 Variation curve of motor power
Fig.18 Normalized fitting curve of motor power and hydraulic system flow change
Fig.19 Variation curve of drive motor with load rate
[1]   黄志强,李刚,丁雅萍,等. KZ-28型可控震源振动器平板性能有限元分析[J].机械科学与技术,2016,35(11):1673-1678. doi:10.13433/j.cnki.1003-8728.2016.1106
HUANG Z Q, LI G, DING Y P, et al. Finite element analysis for dynamic performances of KZ-28 vibroseis vibrator baseplate[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(11): 1673-1678.
doi: 10.13433/j.cnki.1003-8728.2016.1106
[2]   胡浩.解读新的土方机械噪声和安全强制性国家标准[J].中国标准化,2012(11):97-100. doi:10.3969/j.issn.1002-5944.2012.11.034
HU H. Interpretation of earth-moving machinery-noise limits and safety compulsory national standards[J]. China Standardization, 2012(11): 97-100.
doi: 10.3969/j.issn.1002-5944.2012.11.034
[3]   李琴,张凯,黄志强,等.可控震源绿色动力可行性探索[J].物探装备,2017,27(5):297-301,324. doi:10.3969/j.issn.1671-0657.2017.05.005
LI Q, ZHANG K, HUANG Z Q, et al. Feasibility study on green power of vibrator[J]. Equipment for Geophysical Prospecting, 2017, 27(5): 297-301, 324.
doi: 10.3969/j.issn.1671-0657.2017.05.005
[4]   刘细平,刘章麒,李亚,等.电动汽车用双层永磁体IPMSM优化分析[J].电机与控制学报,2017,21(10): 30-39.
LIU X P, LIU Z Q, LI Y, et al. Optimization and analysis of IPMSM with double-layer permanent magnet used in electric vehicle[J]. Electric Machines and Control, 2017, 21 (10): 30-39.
[5]   董新伟,王一飞,杨磊.车用高性能永磁同步电机磁极设计综述[J].微电机,2019,52(11):97-100. doi:10.3969/j.issn.1001-6848.2019.11.020
DONG X W, WANG Y F, YANG L. A survey of magnetic pole design for high performance permanent magnet synchronous motors[J]. Micromotors, 2019, 52 (11): 97-100.
doi: 10.3969/j.issn.1001-6848.2019.11.020
[6]   赵艳娥,张建武.四轮驱动燃料电池汽车动力系统参数匹配与优化[J].汽车工程,2007(5):409-414,432. doi:10.3321/j.issn:1000-680X.2007.05.012
ZHAO Y, ZHANG J W. Parameter matching and optimization for the powertrain of a FWD fuel cell electric vehicle[J]. Automotive Engineering, 2007(5): 409-414, 432.
doi: 10.3321/j.issn:1000-680X.2007.05.012
[7]   刘灵芝,张炳力,汤仁礼.某型纯电动汽车动力系统参数匹配研究[J].合肥工业大学学报(自然科学版), 2007(5):591-593.
LIU L Z, ZHANG B L, TANG R L. Matching of powertrain parameters of a pure electric vehicle[J]. Journal of Hefei University of Technology (Natural Science), 2007 (5): 591-593.
[8]   姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006(4):33-37. doi:10.3321/j.issn:1000-565X.2006.04.008
JI F Z, GAO F. Matching of motor and powertrain parameters of electric vehicle[J]. Journal of South China University of Technology (Natural Science Edition), 2006(4): 33-37.
doi: 10.3321/j.issn:1000-565X.2006.04.008
[9]   谢颖,黎志伟,郭金鹏.电动汽车用高功率密度感应电机的设计与研究[J].电机与控制学报,2020,24(2):46-54. doi:10.15938/j.emc.2020.02.006
XIE Y, LI Z W, GUO J P. Design and research on high power density induction motor in electric vehicle[J]. Electric Machines and Control, 2020, 24(2): 46-54.
doi: 10.15938/j.emc.2020.02.006
[10]   王群京,周建,钱喆,等.优化对称性降低V形内置式永磁电机齿槽转矩[J].电机与控制学报,2020, 24(11):55-62.
WANG Q J, ZHOU J, QIAN Z, et al. Optimizing symmetry to reduce the cogging torque of the V-type interior permanent magnet machines[J]. Electric Machines and Control, 2020, 24(11): 55-62.
[11]   王军年,刘健,初亮,等.电动汽车驱动电机结构参数优化设计[J].交通运输工程学报,2016,16(6):72-81. doi:10.3969/j.issn.1671-1637.2016.06.009
WANG J N, LIU J, CHU L, et al. Optimal design of driving motor structural parameters for electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 72-81.
doi: 10.3969/j.issn.1671-1637.2016.06.009
[12]   邢泽智,王秀和,赵文良.基于不同极弧系数组合分段倾斜磁极的表贴式永磁同步电机齿槽转矩削弱措施研究[J].中国电机工程学报,2021,41(16):5737-5748.
XING Z Z, WANG X H, ZHAO W L. Research on reduction methods of cogging torque based on segmented skewing magnetic poles with different combinations of pole-arc coefficients in surface-mounted permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2021, 41(16): 5737-5748.
[13]   王淑旺,朱标龙,田旭,等.车用电机定子铁芯损耗的分析与计算[J].合肥工业大学学报(自然科学版),2016, 39(10):1311-1315.
WANG S W, ZHU B L, TIAN X, et al. Analysis and calculation of stator core loss in vehicle motor[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(10): 1311-1315.
[14]   TAO D, ZHOU K L, LÜ F, et al. Magnetic field characteristics and stator core losses of high-speed permanent magnet synchronous motors[J]. Energies, 2020, 13(3): 535.
[15]   XU Y, AI M, XU Z, et al. Research on interior permanent magnet synchronous motor based on performance matching of electric bus[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1-4.
[16]   ZHAO F, YU Z J, CAO J, et al. Design and optimization of a high-speed permanent magnet synchronous machine for gas compressors[J]. IEEE Transactions on Magnetics, 2022, 58(2): 1-5.
[17]   HU Y, ZHU S, LIU C, et al. Electromagnetic performance analysis of interior PM machines for electric vehicle applications[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 199-208.
[18]   胡明辉,谢红军,秦大同.电动汽车电机与传动系统参数匹配方法的研究[J].汽车工程,2013,35(12):1068-1073. doi:10.3969/j.issn.1000-680X.2013.12.004
HU M H, XIE H J, QIN D T. A study on the parameter matching between the motor and transmission system of an electric vehicle[J]. Automotive Engineering, 2013, 35(12): 1068-1073.
doi: 10.3969/j.issn.1000-680X.2013.12.004
[19]   SUN X, SHI Z, LEI G, et al. Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10535-10544.
[20]   陈振,李涛,薛晓伟,等.基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J].工程设计学报,2021,28(4):415-425. doi:10.3785/j.issn.1006-754X.2021.00.061
CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
doi: 10.3785/j.issn.1006-754X.2021.00.061
[21]   王光德,王春强,曹文娟,等.可控震源低频振动和液压流量的关联浅析[J].物探装备,2021,31(3):182-184. doi:10.3969/j.issn.1671-0657.2021.03.013
WANG G D, WANG C Q, CAO W J, et al. An analysis of the correlation between low frequency vibration of vibrator and hydraulic flow[J]. Equipment for Geophysical Prospecting, 2021, 31(3): 182-184.
doi: 10.3969/j.issn.1671-0657.2021.03.013
[22]   张亚梅,王永芳,李燕兵,等.一种可控震源的驱动系统设计[J].物探装备,2022,32(1):13-16,20. doi:10.3969/j.issn.1671-0657.2022.01.004
ZHANG Y M, WANG Y F, LI Y B, et al. Drive system design for a kind of vibrator[J]. Equipment for Geophysical Prospecting, 2022, 32(1): 13-16, 20.
doi: 10.3969/j.issn.1671-0657.2022.01.004
[23]   卓亮,孙鲁,施道龙,等.考虑温度变化的高温高速永磁电机转子涡流损耗半解析模型及实验验证[J].中国电机工程学报,2021,41(24):8305-8315.
ZHUO L, SUN L, SHI D L, et al. Semi-analytical model and experimental verification of rotor eddy current loss of high temperature high speed permanent magnet machine considering temperature change[J]. Proceedings of the CSEE, 2021, 41(24): 8305-8315.
[1] Xiaoqiang ZHANG,Biwei LU,Jiaqin LIU,Yucheng WU. Topology optimization design and steady-state thermal analysis of fusion reactor divertor[J]. Chin J Eng Design, 2023, 30(5): 601-607.
[2] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chin J Eng Design, 2023, 30(5): 626-633.
[3] Baicun WANG,Kailing ZHU,Jinsong BAO,Feng WANG,Haibo XIE,Huayong YANG. Intelligent design and scheduling optimization of painted body storage based on digital pedestal system[J]. Chin J Eng Design, 2023, 30(4): 399-408.
[4] Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chin J Eng Design, 2023, 30(4): 467-475.
[5] Jindong WANG,Yuhong XIE,Yi CHEN,Zhanyang WU. Biomimetic design of hammer pieces for hammer mill based on beaver incisors[J]. Chin J Eng Design, 2023, 30(4): 476-484.
[6] Zhimin GUO,Haishu DAI,Jiang ZHAI,Haocen HONG,Baicun WANG,Haibo XIE,Huayong YANG. Distributed co-simulation and dynamic optimization of axial piston pump based on FMI[J]. Chin J Eng Design, 2023, 30(4): 495-502.
[7] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chin J Eng Design, 2023, 30(4): 503-511.
[8] Yumin HE,Ying HAN,Jing ZHOU. Research on adaptive sliding mode control of tower crane based on improved fruit fly optimization algorithm[J]. Chin J Eng Design, 2023, 30(3): 271-280.
[9] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chin J Eng Design, 2023, 30(3): 334-341.
[10] Xiaofei ZHENG,Zhenhai HUANG,Xiaolong MA,Jianxin WANG,Binrui WANG. Structure optimization and analysis of pole-climbing robot based on SIMP method[J]. Chin J Eng Design, 2023, 30(3): 342-352.
[11] Junliang FAN,Li XIAO,Yueting LUO,Gang CHEN,Xiaolin QU,Yi TANG,Hengxiang GONG. Optimization design and implementation of atomization assisted CVD cavity[J]. Chin J Eng Design, 2023, 30(2): 182-188.
[12] San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator[J]. Chin J Eng Design, 2022, 29(6): 684-694.
[13] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chin J Eng Design, 2022, 29(6): 695-704.
[14] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chin J Eng Design, 2022, 29(6): 713-719.
[15] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.