Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (5): 601-607    DOI: 10.3785/j.issn.1006-754X.2023.00.065
Mechanical Optimization Design     
Topology optimization design and steady-state thermal analysis of fusion reactor divertor
Xiaoqiang ZHANG1(),Biwei LU1,2,Jiaqin LIU3,4,Yucheng WU1,4,5()
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.Hefei Zhongke Chongming Technology Co. , Ltd. , Hefei 230000, China
3.Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
4.National and Local Joint Engineering Research Center for Nonferrous Metal and Processing Technology, Hefei University of Technology, Hefei 230009, China
5.Advanced Energy and Environmental Materials International Science and Technology Cooperation Base, Hefei University of Technology, Hefei 230009, China
Download: HTML     PDF(2755KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the cooling capacity of the divertor in fusion reactor and meet the requirements of its high temperature service performance, based on the integrated additive manufacturing technology, the topology optimization design and model reconstruction for the W/Cu module in divertor were carried out by using variable density method with the design goal of maximizing heat transfer. Meanwhile, the finite element numerical simulation and the calculation of temperature field and stress field for the W/Cu module after topology optimization were carried out by using large commercial simulation software. The results showed that under the condition of 10 MW/m2 steady-state heat flux density, the maximum temperature of the W/Cu module after topology optimization was reduced by nearly 108.5 ℃, to only 512.3 ℃; the maximum interface stress of the W/Cu module was reduced by nearly 264.2 MPa, to only 486.5 MPa, which indicated that the stress distribution was significantly improved; the total deformation and elastic strain of the W/Cu module were greatly reduced. The application of the topology optimization structure can greatly improve the feasibility of integrated additive manufacturing of divertors with low cost, high efficiency and high reliability.



Key wordsfusion reactor      divertor      additive manufacturing      W/Cu module      topology optimization      steady-state thermal analysis     
Received: 01 March 2023      Published: 03 November 2023
CLC:  TL 62+6  
Corresponding Authors: Yucheng WU     E-mail: 2021110271@mail.hfut.edu.cn;ycwu@hfut.edu.cn
Cite this article:

Xiaoqiang ZHANG,Biwei LU,Jiaqin LIU,Yucheng WU. Topology optimization design and steady-state thermal analysis of fusion reactor divertor. Chin J Eng Design, 2023, 30(5): 601-607.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.065     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I5/601


聚变堆偏滤器拓扑优化设计与稳态热分析

为了提高聚变堆偏滤器的冷却能力,以满足其高温服役性能需求,基于一体化增材制造技术,以换热量最大为设计目标,采用变密度法对偏滤器中的W/Cu模块进行拓扑优化设计和模型重构,并采用大型商用仿真软件对拓扑优化后的W/Cu模块进行有限元数值模拟及温度场、应力场计算。结果表明,在10 MW/m2稳态热流密度条件下,拓扑优化后W/Cu模块的最高温度降低了108.5 ℃,仅为512.3 ℃;W/Cu模块界面处的最大热应力下降了264.2 MPa,仅为486.5 MPa,说明应力分布得到明显改善;W/Cu模块的总变形和弹性应变均大幅减小。该拓扑优化结构的应用可大大提升聚变堆偏滤器实现低成本、高效率、高可靠性的一体化增材制造的可行性。


关键词: 聚变堆,  偏滤器,  增材制造,  W/Cu模块,  拓扑优化,  稳态热分析 
Fig.1 Flat-type W/Cu module
Fig.2 Design model of W/Cu module flow channel structure
Fig.3 Optimization iteration curve for objective function value and volume fraction of W/Cu module flow channel
Fig.4 Topology optimization process of W/Cu module flow channel
Fig.5 Smooth processing of W/Cu module flow channel topology optimization results
Fig.6 Geometric reconstruction of W/Cu module flow channel topology optimization model
Fig.7 3D physical models of W/Cu module before and after topology optimization
材料温度/℃杨氏模量/GPa正切模量/GPa

热膨胀系数/

10-6 (℃)-1

导热系数/

[W/(m·℃)]

密度/(kg/m3)屈服强度/MPa

比热容/

[J/(kg?℃)]

W203981.33.9317419 3001360129
5003901.04.2113319 180854144
1 0003680.84.5111019 040465158
OFHC201251.516.74038 96069390
2001101.317.250
Cu4001000.917.83798 93345
Table 1 Basic physical parameters of W and Cu materials
Fig.8 Temperature distribution cloud map and convective heat transfer coefficient of W/Cu module
Fig.9 Temperature distribution cloud maps of W/Cu module under steady-state heat flux density of 10 MW/m2
模块热应力/MPa总变形/μm弹性应变/%
优化W/Cu模块846.833.10.49
传统W/Cu模块1 325.573.90.75
Table 2 Structure analysis results of W/Cu module under steady-state heat flux density of 10 MW/m2
Fig.10 Stress distribution cloud maps of W/Cu module under steady-state heat flux density of 10 MW/m2
[1]   BIGOT B. ITER assembly phase: progress toward first plasma[J]. Fusion Engineering and Design, 2021, 164: 112207.
[2]   HIRAI T, BARABASH V, ESCOURBIAC F, et al. ITER divertor materials and manufacturing challenges[J]. Fusion Engineering and Design, 2017, 125: 250-255.
[3]   罗来马,谭晓月,罗广南,等.第一壁材料W/Cu界面设计与制备研究现状[J].核聚变与等离子体物理,2014,34(4):340-347. doi:10.3969/j.issn.0254-6086.2014.04.010
LUO L M, TAN X Y, LUO G N, et al. Current status of design and manufacture on W/Cu interface of the first wall material[J]. Nuclear Fusion and Plasma Physics, 2014, 34(4): 340-347.
doi: 10.3969/j.issn.0254-6086.2014.04.010
[4]   王健,宋云涛,郭后扬,等. EAST偏滤器钨铜单体水冷模块参数优化[J].核聚变与等离子体物理,2013,33(1):72-77. doi:10.3969/j.issn.0254-6086.2013.01.013
WANG J, SONG Y T, GUO H Y, et al. Parameters optimization for EAST divertor W/Cu water-cooling monoblocks[J]. Nuclear Fusion and Plasma Physics, 2013, 33(1): 72-77.
doi: 10.3969/j.issn.0254-6086.2013.01.013
[5]   钱新元,宋云涛,叶民友,等.聚变堆偏滤器冷却通道结构优化分析[J].原子能科学技术,2015,49(7):1273-1279. doi:10.7538/yzk.2015.49.07.1273
QIAN X Y, SONG Y T, YE M Y, et al. Optimization analysis for structure of cooling channel of fusion reactor divertor[J]. Atomic Energy Science and Technology, 2015, 49(7): 1273-1279.
doi: 10.7538/yzk.2015.49.07.1273
[6]   TOKITANI M, HAMAJI Y, HIRAOKA Y, et al. Advanced multi-step brazing for fabrication of a divertor heat removal component[J]. Nuclear Fusion, 2021, 61(4): 046016.
[7]   JIMÉNEZ A, BIDARE P, HASSANIN H, et al. Powder-based laser hybrid additive manufacturing of metals: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 63-96.
[8]   RIBEIRO T P, BERNARDO L F A, ANDRADE J M A. Topology optimisation in structural steel design for additive manufacturing[J]. Applied Sciences, 2021, 11(5): 2112.
[9]   ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing: status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1): 91-110.
[10]   ZHANG C, WANG S, LI J, et al. Additive manufacturing of products with functional fluid channels: a review[J]. Additive Manufacturing, 2020, 36: 101490.
[11]   ALEXANDERSEN J, ANDREASEN C S. A review of topology optimisation for fluid-based problems[J]. Fluids, 2020, 5(1): 29.
[12]   MATSUMORI T, KONDOH T, KAWAMOTO A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[J]. Structural and Multidisciplinary Optimization, 2013, 47: 571-581.
[13]   LIU Z, ZENG X, ZHAO W, et al. A topology optimization design of three-dimensional cooling plate for the thermal homogeneity of lithium-ion batteries[J]. Energy Conversion and Management: X, 2022, 14: 100215.
[14]   ZOU A Q, CHUAN R, QIAN F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[J]. Applied Thermal Engineering, 2022, 207: 118128.
[15]   ZHAO X, ZHOU M D, SIGMUND O, et al. A “poor man’s approach” to topology optimization of cooling channels based on a Darcy flow model[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1108-1123.
[16]   LI H, DING X H, JING D L, et al. Experimental and numerical investigation of liquid-cooled heat sinks designed by topology optimization[J]. International Journal of Thermal Sciences, 2019, 146: 106065.
[17]   刘云飞,熊敏,丁晓红.液冷板散热流道的拓扑优化体积分数研究[J].软件工程,2022,25(9):42-46,41.
LIU Y F, XIONG M, DING X H. Study on volume fraction for topology optimization of heat sink passages on liquid-cooled plate[J]. Software Enginnering, 2022, 25(9): 42-46, 41.
[18]   李昊,丁晓红,景大雷.液冷通道分布优化设计的仿真和试验研究[J].机械工程学报,2019,55(10):198-206. doi:10.3901/jme.2019.10.198
LI H, DING X H, JING D L. Experimental and numerical investigation of fluid cooling channel layout designed by topology optimization[J]. Journal of Mechanical Engineering, 2019, 55(10): 198-206.
doi: 10.3901/jme.2019.10.198
[19]   魏啸,丁晓红.不同目标函数的传热结构拓扑优化研究[J].电子科技,2017,30(2):156-160.
WEI X, DING X H. Topology optimization of transfer structure for different objective functions[J]. Electronic Science and Technology, 2017, 30(2): 156-160.
[20]   薛奎,陈俊凌,朱大焕. ITER偏滤器W/Cu单体模块热-结构模拟与分析[J].核聚变与等离子体物理,2013,33(4):354-358. doi:10.3969/j.issn.0254-6086.2013.04.011
XUE K, CHEN J L, ZHU D H. Thermo-mechanical simulation and analysis of W/Cu mono-block for ITER divertor[J]. Nuclear Fusion and Plasma Physics, 2013, 33(4): 354-358.
doi: 10.3969/j.issn.0254-6086.2013.04.011
[1] Xiaofei ZHENG,Zhenhai HUANG,Xiaolong MA,Jianxin WANG,Binrui WANG. Structure optimization and analysis of pole-climbing robot based on SIMP method[J]. Chin J Eng Design, 2023, 30(3): 342-352.
[2] Jing-liang WANG,Tian-cheng ZHU,Long-biao ZHU,Fei-yun XU. Research on variable density topology optimization method for continuum structure[J]. Chin J Eng Design, 2022, 29(3): 279-285.
[3] WANG Chun-xiang, WANG Yao, HAO Zhi-bo. Segmentation adaptive slicing algorithm based on features of parts in additive manufacturing[J]. Chin J Eng Design, 2020, 27(3): 373-379.
[4] ZHANG Hu-zhi, MA Zhe-lin, HUANG Hai-lin, JIN Hao, PENG Wei. Topology optimization for reinforced concrete deep beam with different displacement boundaries[J]. Chin J Eng Design, 2019, 26(6): 691-699.
[5] CHEN Jing, HOU Wei, ZHOU Yi-bo, WANG Xiu-zhuan, CHU Song-lin. Rapid research and development of complex components in aero-engine enabled by additive manufacturing[J]. Chin J Eng Design, 2019, 26(2): 123-132.
[6] ZHANG Ri-cheng, ZHAO Jiong, WU Qing-long, XIONG Xiao-lei, ZHOU Qi-cai, JIAO Hong-yu. Variable density topology optimization method considering structural stability[J]. Chin J Eng Design, 2018, 25(4): 441-449.
[7] DU Yi-xian, LI Rong, XU Ming, TIAN Qi-hua, ZHOU Xiang-man. Topology optimization design for negative Poisson's ratio microstructure[J]. Chin J Eng Design, 2018, 25(4): 450-456.
[8] TANG Hua-ping, ZENG Li, WANG Sheng-ze, CHEN Hao-sen. Design of roll-over protective structure for heavy mining dumper based on topology optimization[J]. Chin J Eng Design, 2018, 25(3): 295-301.
[9] QIU Rui-bin, LEI Fei, CHEN Yuan, WANG Qiong. Research on the method of multi-case topology optimization of frame structure based on the weight ratio[J]. Chin J Eng Design, 2016, 23(5): 444-452.
[10] CHEN Jian-wei, ZHU Da-chang, ZHANG Rong-xing, ZHU Cheng-wei. Topology optimization design for the 3-RPRR similarly planar fully compliant parallel mechanism[J]. Chin J Eng Design, 2016, 23(3): 251-255,270.
[11] XIE Yan-min, HE Yu-jun, ZHUO De-zhi, XIONG Wen-cheng. Topology optimization of hot stamping die structure on high-strength sheet metal for U shaped part[J]. Chin J Eng Design, 2016, 23(1): 60-66.
[12] SUN Kai, BO Rui-feng, LU Jian-peng, LI Rui-qin. Multi-objective topology optimization of design compliant mechanisms based on global strain[J]. Chin J Eng Design, 2015, 22(6): 575-580.
[13] TIAN Qi-hua, WANG Jin-xue, DU Yi-xian, WANG Tao. Three-dimensional continuum topology optimization based on density-sensitivity level update policy[J]. Chin J Eng Design, 2015, 22(2): 155-160.
[14] LI Wen-jun, ZHOU Qi-cai, WU Qing-long, XIONG Xiao-lei. Stability-ensured topology optimization of geometrically nonlinear boom structures[J]. Chin J Eng Design, 2014, 21(5): 449-455.
[15] DU Yi-Xian, CHEN De, ZHOU Jun-Xiong. Topology optimization for multi-workstation turntable under multi-load cases[J]. Chin J Eng Design, 2013, 20(3): 195-198.