Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (4): 441-449    DOI: 10.3785/j.issn.1006-754X.2018.04.011
    
Variable density topology optimization method considering structural stability
ZHANG Ri-cheng1, ZHAO Jiong1, WU Qing-long1, XIONG Xiao-lei1, ZHOU Qi-cai1, JIAO Hong-yu1,2
1. School of Mechanical Engineering, Tongji University, Shanghai, 201804, China;
2. School of Automotive Engineering, Changshu Institute of Technology, Suzhou 215500, China
Download: HTML     PDF(3548KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To achieve the topology optimization of plane model with stability constraints, the stability problem is introduced into the traditional variable density method. The mathematical model of optimization problem was established by using the relative density of element as design variable, structural volume and instability load factor as constraints and structural flexibility as objective, and a variable density topology optimization method considering structural stability was proposed. Based on the sensitivity analysis of the flexibility, volume and instability load factor to design variables, the optimization criteria were derived according to the Lagrange multiplier method and Kuhn-Tucker condition. At the same time, the Lagrange multiplier of the criteria was solved through Taylor expansion of the constraints. The geometric stiffness matrix of the plane four-node quadrilateral element was deduced to calculate the geometry strain energy of the optimization criteria. Finally, the proposed method was verified by an example. Through the comparison with the traditional variable density method, it was illustrated that the proposed method could notably improve the stability of the optimization result. The research results have important guiding significance for the optimal design of the slender compression structure, and have certain reference value for the stability design of the structure.



Key wordsstability      topology optimization      variable density method      geometric stiffness      sensitivity     
Received: 30 November 2017      Published: 28 August 2018
CLC:  TH11  
Cite this article:

ZHANG Ri-cheng, ZHAO Jiong, WU Qing-long, XIONG Xiao-lei, ZHOU Qi-cai, JIAO Hong-yu. Variable density topology optimization method considering structural stability. Chinese Journal of Engineering Design, 2018, 25(4): 441-449.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.04.011     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I4/441


考虑结构稳定性的变密度拓扑优化方法

将稳定性问题引入传统变密度法中,可实现包含稳定性约束的平面模型结构拓扑优化。以单元相对密度为设计变量,结构柔度最小为目标函数,结构体积和失稳载荷因子为约束条件建立优化问题数学模型,提出了一种考虑结构稳定性的变密度拓扑优化方法。通过分析结构柔度、体积、失稳载荷因子对设计变量的灵敏度,并基于拉格朗日乘子法和Kuhn-Tucker条件,推导了优化问题的迭代准则。同时,利用基于约束条件的泰勒展开式求解优化准则中的拉格朗日乘子。通过推导平面四节点四边形单元几何刚度矩阵的显式表达式,得到了优化准则中的几何应变能。最后,通过算例对提出的方法进行了验证,并与不考虑稳定性的传统变密度拓扑优化方法进行对比,结果表明该方法能显著提高拓扑优化结果的稳定性。研究结果对细长受压结构的优化设计有重要指导意义,对结构的稳定性设计有一定参考价值。


关键词: 稳定性,  拓扑优化,  变密度法,  几何刚度,  灵敏度 
[[1]]   焦洪宇,周奇才,李文军,等.基于变密度法的周期性拓扑优化[J].机械工程学报,2013,49(13):132-138. JIAO Hong-yu, ZHOU Qi-cai, LI Wen-jun, et al. Periodic topology optimization using variable density method[J]. Journal of Mechanical Engineering, 2013, 49(13):132-138.
[[2]]   BROWNE P A, BUDD C, GOULD N, et al. A fast method for binary programming using first-order derivatives, with application to topology optimization with buckling constraints[J]. International Journal for Numerical Methods in Engineering, 2012, 92(12):1026-1043.
[[3]]   ZHOU M. Topology optimization for shell structures with linear buckling responses[C]//World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress on Computational Mechanics, Beijing, Sept.5-10, 2004.
[[4]]   隋允康,边炳传.屈曲与应力约束下连续体结构的拓扑优化[J].工程力学,2008,25(8):6-12. SUI Yun-kang, BIAN Bing-chuan. Topology optimization of continuum structures under buckling and stress constraints[J]. Engineering Mechanics, 2008, 25(8):6-12.
[[5]]   隋允康,边炳传,叶红玲.连续体结构屈曲约束的ICM方法拓扑优化[J].计算力学学报,2008,25(3):345-351. SUI Yun-kang, BIAN Bing-chuan, YE Hong-ling. Topological optimization of the continuum structure subjected to the buckling constraints with ICM method[J]. Chinese Journal of Computational Mechanics, 2008, 25(3):345-351.
[[6]]   GUO X, CHENG G, YAMAZAKI K. A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints[J]. Structure Multidiscipline Optimization, 2001, 22(5):364-372.
[[7]]   LUND E. Buckling topology optimization of laminated multi-material composite shell structures[J]. Composite Structures, 2009, 91(2):158-167.
[[8]]   程耿东,郭旭.考虑局部稳定性约束的桁架拓扑优化设计[J].大连理工大学学报,1995,35(6):770-775. CHENG Geng-dong, GUO Xu. Inverstigation of truss topology optimization under local buckling constraints[J]. Journal of Dalian University of Technology, 1995, 35(6):770-775
[[9]]   高兴军.稳定性约束下连续体结构两尺度拓扑优化[D].广州:华南理工大学工木与交通学院,2015:46-47. GAO Xing-jun. Two-scale topology optimization of continuum structures under buckling constraints[D]. Guangzhou:South China University of Technology, School of CML Engineering and Transportation, 2015:46-47.
[[10]]   NEVES M M, RODRIGUES H, GUEDES J M. Generalized topology design of structures with a buckling load criterion[J]. Structural Optimization, 1995, 10(2):71-78.
[[11]]   NEVES M M, SIGMUND O, BENDSØE M P. Topology optimization of periodic microstructures with a penalization of highly localized buckling modes[J]. International Journal for Numerical Methods in Engineering, 2002, 54(6):809-834.
[[12]]   SIGMUND O, BENDSOE M P. Material interpolations schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9/10):635-654.
[[13]]   MARTINEZ J M. A note on the theoretical convergence properties of the SIMP method[J]. Structural & Multidisciplinary Optimization, 2005, 29(4):319-323.
[[14]]   王勖成.有限单元法[M].北京:清华大学出版社,2003:30-50. WANG Xu-cheng. Finite element method[M]. Beijing:Tsinghua University Press, 2003:30-50.
[[15]]   CLOUGH R W. Dynamics of structures[M]. New York:McGraw-Hill, 1993:366.
[[16]]   EDWARD L. Wilson. Three-dimensional static and dynamic analysis of structures[M]. Berkley:Computer & Structures, Inc., 1996:9-11.
[1] Xiaoqiang ZHANG,Biwei LU,Jiaqin LIU,Yucheng WU. Topology optimization design and steady-state thermal analysis of fusion reactor divertor[J]. Chinese Journal of Engineering Design, 2023, 30(5): 601-607.
[2] Yuchun KUANG,Hui ZHONG,Liangchun ZHONG. Design and research of screw motor with quasi circular-arc contour-pattern[J]. Chinese Journal of Engineering Design, 2023, 30(5): 640-649.
[3] Zhan YANG,Qipeng LI,Wei TANG,Kecheng QIN,Suifan CHEN,Kaidi WANG,Yang LIU,Jun ZOU. Design and analysis of small land-air deformable amphibious robot[J]. Chinese Journal of Engineering Design, 2023, 30(3): 325-333.
[4] Xiaofei ZHENG,Zhenhai HUANG,Xiaolong MA,Jianxin WANG,Binrui WANG. Structure optimization and analysis of pole-climbing robot based on SIMP method[J]. Chinese Journal of Engineering Design, 2023, 30(3): 342-352.
[5] Jie YANG,Zhuang-zhuang PENG,Shi-jie WANG,Cong MA,Long WANG,Guo-lin DUAN. Study on fuzzy neural network PID stability control for extrusion force of ceramic slurry 3D printer[J]. Chinese Journal of Engineering Design, 2023, 30(1): 65-72.
[6] Chen WANG,Bo GAO,Xu YANG. Lightweight design of Stewart type six-axis force sensor[J]. Chinese Journal of Engineering Design, 2022, 29(4): 419-429.
[7] Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method[J]. Chinese Journal of Engineering Design, 2022, 29(4): 438-445.
[8] Jing-liang WANG,Tian-cheng ZHU,Long-biao ZHU,Fei-yun XU. Research on variable density topology optimization method for continuum structure[J]. Chinese Journal of Engineering Design, 2022, 29(3): 279-285.
[9] TAO Xiao-dong, GUO An-fu, LI Hui, HAN Wei, LI Wan-cai, LI Tao. Performance analysis and optimization of disc ditcher based on sensitivity analysis[J]. Chinese Journal of Engineering Design, 2022, 29(1): 59-65.
[10] ZENG Guang, BIAN Qiang, ZHAO Chun-jiang, YIN Yu-feng, FENG Yi-jie. Analysis of stability and vibration characteristics of angular contact ball bearing cage under variable parameters[J]. Chinese Journal of Engineering Design, 2020, 27(6): 735-743.
[11] LIU Ruo-chen, XU Cheng, WANG Kui-yang, WANG Yi-min, SUN Jian-zhong. Research on performance parameters of new wear-site electrostatic sensor[J]. Chinese Journal of Engineering Design, 2020, 27(5): 645-653.
[12] TAO Xiao-hui, LI Guo-long, XU Kai, LI Chuan-zhen. Sensitivity analysis of geometric error of worm wheel gear grinding machine[J]. Chinese Journal of Engineering Design, 2020, 27(1): 111-120.
[13] LI Cheng-bing, YE Chao, MAO Xi-hao. Application of LSSVM optimized by improved artificial bee colony algorithm in quantitative analysis of mixture gas[J]. Chinese Journal of Engineering Design, 2020, 27(1): 94-102.
[14] ZHANG Hu-zhi, MA Zhe-lin, HUANG Hai-lin, JIN Hao, PENG Wei. Topology optimization for reinforced concrete deep beam with different displacement boundaries[J]. Chinese Journal of Engineering Design, 2019, 26(6): 691-699.
[15] HUANG Ze-hao, ZHANG Zhen-hua, HUANG Xu, LEI Wei. Analysis of time-varying characteristics of braking instability of drum brake[J]. Chinese Journal of Engineering Design, 2019, 26(6): 714-721.