|
|
[1] |
王辉.不确定性连续体结构的拓扑优化研究[D].成都:西南交通大学,2021:1-154. WANG Hui. Research on topology optimization of uncertain continuum structure[D]. Chengdu: Southwest Jiaotong University, 2021: 1-154.
|
|
|
[2] |
徐浩然,贺福强,李赟,等.飞机起落架的拓扑与自由曲面形状优化[J].组合机床与自动化加工技术,2021(4):134-138. XU Hao-ran, HE Fu-qiang, LI Yun, et al. Topology and free-form surface shape optimization of aircraft landing gear[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(4): 134-138.
|
|
|
[3] |
胡松,黄勇,张璐.基于ANSYS的石膏空腔模无梁楼盖拓扑优化设计[J].贵州科学,2015,33(1):25-29. doi:10.3969/j.issn.1003-6563.2015.01.005 HU Song, HUANG Yong, ZHANG Lu. Optimized topology design of gypsum embedded in filler cast-in-place concrete hollow floor based on ANSYS[J]. Guizhou Science, 2015, 33(1): 25-29.
doi: 10.3969/j.issn.1003-6563.2015.01.005
|
|
|
[4] |
JIAO H Y, LI F, JIANG Z Y, et al. Periodic topology optimization of a stacker crane[J]. IEEE Access, 2019, 7: 186553-186562. doi:10.1109/access.2019.2960327
doi: 10.1109/access.2019.2960327
|
|
|
[5] |
SHEN W, OHSAKI M. Geometry and topology optimization of plane frames for compliance minimization using force density method for geometry model[J]. Engineering with Computers, 2021, 37(3): 2029-2046.
|
|
|
[6] |
陈秉智,张雪青,邱广宇.时速400公里高速列车底架拓扑优化[J].机械设计与制造,2021(7):272-275. doi:10.3969/j.issn.1001-3997.2021.07.064 CHEN Bing-zhi, ZHANG Xue-qing, QIU Guang-yu. Topology optimization of underframe for 400 km/h high-speed train[J]. Machinery Design & Manufacture, 2021(7): 272-275.
doi: 10.3969/j.issn.1001-3997.2021.07.064
|
|
|
[7] |
王铭昭,何锋,李家俊,等.档位互换机构壳体拓扑优化[J].机械设计与制造,2021(6):75-78,84. doi:10.3969/j.issn.1001-3997.2021.06.018 WANG Ming-zhao, HE Feng, LI Jia-jun, et al. Topology optimization of gear shifting mechanism housing[J]. Machinery Design & Manufacture, 2021(6): 75-78, 84.
doi: 10.3969/j.issn.1001-3997.2021.06.018
|
|
|
[8] |
周围,李群明,高志伟,等.基于变密度法的送杆机构的运送支架拓扑优化设计[J].制造业自动化,2021,43(4):113-117. doi:10.3969/j.issn.1009-0134.2021.04.023 ZHOU Wei, LI Qun-ming, GAO Zhi-wei, et al. Topology optimization design of conveying bracket of rod-feeding mechanism based on variable density method[J]. Manufacturing Automation, 2021, 43(4): 113-117.
doi: 10.3969/j.issn.1009-0134.2021.04.023
|
|
|
[9] |
WANG H, CHENG W M, DU R, et al. Improved proportional topology optimization algorithm for solving minimum compliance problem[J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 475-493. doi:10.1007/s00158-020-02504-8
doi: 10.1007/s00158-020-02504-8
|
|
|
[10] |
SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4/5): 401-424. doi:10.1007/s00158-006-0087-x
doi: 10.1007/s00158-006-0087-x
|
|
|
[11] |
匡兵,刘娟,段君伟,等.基于改进灵敏度过滤策略的SIMP方法[J].计算力学学报,2017,34(1):81-87. KUANG Bing, LIU Juan, DUAN Jun-wei, et al. SIMP method based on modified sensitivity filtering strategy[J]. Chinese Journal of Computational Mechanics, 2017, 34(1): 81-87.
|
|
|
[12] |
WEI T, YANG X, CHEN C, et al. Grey filter functions for suppression of grey-scale elements[J]. Engineering Optimization, 2019, 51(2): 317-331. doi:10.1080/0305215x.2018.1454441
doi: 10.1080/0305215x.2018.1454441
|
|
|
[13] |
廉睿超,敬石开,杨海成,等.考虑分区混合权重的敏度过滤方法[J].计算机辅助设计与图形学学报,2019,31(5):842-850. doi:10.3724/sp.j.1089.2019.17336 LIAN Rui-chao, JING Shi-kai, YANG Hai-cheng, et al. Sensitivity filtering method considering partition blending weights[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(5): 842-850.
doi: 10.3724/sp.j.1089.2019.17336
|
|
|
[14] |
BIYIKLI E, TO A C. Proportional topology optimization: A new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB[J]. PLoS One, 2015, 10(12): e0145041. doi:10.1371/journal.pone. 0145041
doi: 10.1371/journal.pone. 0145041
|
|
|
[15] |
张国锋,徐雷,李大双,等.连续体结构拓扑优化敏度过滤研究[J].组合机床与自动化加工技术,2021(6):29-32. ZHANG Guo-feng, XU Lei, LI Da-shuang, et al. Research on sensitivity filtering of continuum topology optimization[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(6): 29-32.
|
|
|
[16] |
高翔,王林军,杜义贤.改进的抑制灰度单元的拓扑优化方法[J].计算机辅助设计与图形学学报,2020,32(12):2003-2012. doi:10.3724/sp.j.1089.2020.18208 GAO Xiang, WANG Lin-jun, DU Yi-xian. An improved topology optimization method for suppressing gray elements[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(12): 2003-2012.
doi: 10.3724/sp.j.1089.2020.18208
|
|
|
[17] |
廉睿超,敬石开,何志军,等.拓扑优化变密度法的灰度单元分层双重惩罚方法[J].计算机辅助设计与图形学学报,2020,32(8):1349-1356,1227. LIAN Rui-chao, JING Shi-kai, HE Zhi-jun, et al. A hierarchical double penalty method of gray-scale elements for SIMP in topology optimization[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(8): 1349-1356, 1227.
|
|
|
[18] |
ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient topology optimization in MATLAB using 88 lines of code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16. doi:10.1007/s00158-010-0594-7
doi: 10.1007/s00158-010-0594-7
|
|
|
[19] |
ZHU H J, ZHANG W H. Integrated layout design of supports and structures[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9/12): 557-569. doi:10.1016/j.cma.2009.10.011
doi: 10.1016/j.cma.2009.10.011
|
|
|
[20] |
CHENG W, WANG H, ZHANG M, et al. Improved proportional topology optimization algorithm for minimum volume problem with stress constraints[J]. Engineering Computations, 2021, 38(1): 392-412. doi:10.1108/ec-12-2019-0560
doi: 10.1108/ec-12-2019-0560
|
|
|