Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (3): 342-352    DOI: 10.3785/j.issn.1006-754X.2023.00.042
Robotic and Mechanism Design     
Structure optimization and analysis of pole-climbing robot based on SIMP method
Xiaofei ZHENG(),Zhenhai HUANG,Xiaolong MA,Jianxin WANG,Binrui WANG()
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
Download: HTML     PDF(5205KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to achieve the structural compactness and lightweight design of pole-climbing robots, and overcome the difficulty of vertical pole movement, the weight reduction can be realized by reducing the thickness of parts. However, it can cause local stress concentration, resulting in insufficient stiffness of robot structure. Therefore, starting from the morphology of inchworms, the SIMP (solid isotropic material with penalization) variable density topology optimization design was carried out for the main structure of the pole-climbing robot, realizing the lightweight design of the robot while ensuring its overall performance. Firstly, the main components such as the gripper and T-joint of the pole-climbing robot were selected as the objects, and three motion gaits were dynamically simulated by ADAMS simulation software to simulate the load changes caused by the three motion gaits under extreme working conditions. Then, the boundary conditions were set based on information such as extreme working condition loads. The Topology Optimization module in ANSYS Workbench software was used to perform SIMP variable density topology optimization on the pole-climbing robot to remove the redundant materials that were slightly affected by loads from the robot structure. The optimized robot model was reconstructed and compared with before optimization. The results showed that while the overall weight of the pole-climbing robot was reduced by 7.6% (from 13.60 kg to 12.57 kg), the comprehensive performance of the gripper and T-joint with larger force was improved. The experimental results of energy consumption test showed that the operating energy consumption of the optimized pole-climbing robot decreased by 7.0% compared with before optimization. The proposed SIMP variable density topology optimization method has a high reference value in the structural design of biomimetic pole-climbing robots.



Key wordsrobot      motion gait      structural analysis      topology optimization      variable density     
Received: 10 January 2023      Published: 06 July 2023
CLC:  TH 164  
Corresponding Authors: Binrui WANG     E-mail: zhengxiaofei.xyz@126.com;wangbrpaper@163.com
Cite this article:

Xiaofei ZHENG,Zhenhai HUANG,Xiaolong MA,Jianxin WANG,Binrui WANG. Structure optimization and analysis of pole-climbing robot based on SIMP method. Chin J Eng Design, 2023, 30(3): 342-352.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.042     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I3/342


基于SIMP方法的爬杆机器人结构优化与分析

为了实现爬杆机器人的结构紧凑和轻量化设计,以及克服垂直爬杆运动困难的问题,可通过减小零件厚度的方法来进行减重,但这会造成局部应力集中,导致机器人结构刚度不足。为此,从尺蠖的形态出发,对爬杆机器人的主要结构进行SIMP(solid isotropic material with penalization,具有惩罚作用的固体各向同性材料)变密度拓扑优化设计,在保证机器人整体性能的基础上实现轻量化设计。首先,选取爬杆机器人的夹持器与T关节等主要部件为对象,通过ADAMS仿真软件对3种运动步态进行动态仿真,模拟了在极限工况下3种运动步态引起的载荷变化。然后,根据极限工况载荷等信息设置边界条件,通过ANSYS Workbench软件中的Topology Optimization模块对爬杆机器人进行SIMP变密度拓扑优化,去除机器人结构中受载荷影响微小的冗余材料,对优化后的机器人模型进行重构并与优化前对比。结果表明,在爬杆机器人整机质量减小了7.6%(由13.60 kg减小为12.57 kg)的同时,受力较大的夹持器和T关节的综合性能有所提高。能耗测试实验结果表明,优化后爬杆机器人的运行能耗比优化前降低了7.0%。所提出的SIMP变密度拓扑优化方法在仿生爬杆机器人的结构设计中具有较高的参考价值。


关键词: 机器人,  运动步态,  结构分析,  拓扑优化,  变密度 
Fig.1 Self-made 5-DOF series pole-climbing robot
Fig.2 Topology optimization process of pole-climbing robot based on SIMP variable density method
Fig.3 Three motion gaits of pole-climbing robot
Fig.4 Load and torque change curves of gripper
Fig.5 Load and torque change curves of T-joint under different motion gaits
Fig.6 Cloud maps of equivalent stress and equivalent deformation of gripper
Fig.7 Cloud maps of equivalent stress and equivalent deformation of T-joint swinging component
Fig.8 Cloud maps of equivalent stress and equivalent deformation of T-joint connection seat
Fig.9 Topology optimization cloud map of gripper
Fig.10 Optimized gripper model
Fig.11 Topology optimization cloud map of T-joint swinging component
Fig.12 Topology optimization cloud map of T-joint connection seat
Fig.13 Optimized T-joint swinging component model
Fig.14 Optimized T-joint connection seat model
Fig.15 Cloud maps of equivalent stress and equivalent deformation of optimized gripper
优化前后质量/kg

最大等效

应力/MPa

最大等效变

形量/mm

变化率/%-28.619.5
优化前0.3549.9920.25
优化后0.2559.7580.32
Table 1 Comparison of quality and mechanical properties of gripper before and after optimization
Fig.16 Cloud maps of equivalent stress and equivalent deformation of optimized T-joint swinging component
优化前后质量/kg

最大等效

应力/MPa

最大等效变形量/mm
变化率/%-40.7134.4
优化前0.2737.9230.23
优化后0.1688.9110.49
Table 2 Comparison of quality and mechanical properties of T-joint swinging component before and after optimization
Fig.17 Cloud maps of equivalent stress and equivalent deformation of optimized T-joint connection seat
优化前后质量/kg

最大等效

应力/MPa

最大等效变形量/mm
变化率/%-32.483.4
优化前0.3477.8970.03
优化后0.23142.8800.05
Table 3 Comparison of quality and mechanical properties of T-joint connection seat before and after optimization
Fig.18 Energy consumption simulation model of optimized pole-climbing robot
Fig.19 Simulation results of energy consumption of pole- climbing robot before and after optimization
Fig.20 Energy consumption experiment on peristaltic gait of pole-climbing robot prototype
Fig.21 Comparison of simulation results and experimental results of energy consumption of pole-climbing robot
[1]   VERTUT J, LIEGEOIS A. General design criteria for manipulators[J]. Mechanism and Machine Theory, 1981, 16(1): 65-70.
[2]   POVSE B, HADDADIN S, BELDER R, et al. A tool for the evaluation of human lower arm injury: approach, experimental validation and application to safe robotics[J]. Robotica, 2016, 34(11): 2499-2515.
[3]   杨姝.复杂机械结构拓扑优化若干问题研究[D].大连:大连理工大学,2007:1-3.
YANG S. Study on topology optimization of complex mechanics structure[D]. Dalian: Dalian University of Technology, 2007: 1-3.
[4]   姚屏,林源,汤勇,等.结构拓扑优化方法及其机器人轻量化应用现状及发展[J].机电工程技术,2018,47(11):117-122. doi:10.3969/j.issn.1009-9492.2018.11.034
YAO P, LIN Y, TANG Y, et al. Current situation and improving trends of structural topology optimization method and the corresponding application in robot light-weight design[J]. Mechanical & Electrical Engineering Technology, 2018, 47(11): 117-122.
doi: 10.3969/j.issn.1009-9492.2018.11.034
[5]   赖欣,师靖远,彭天宇,等.爬壁机器人变密度拓扑优化吸附结构研究[J].机械科学与技术,2021,40(6):821-827. doi:10.13433/j.cnki.1003-8728.20200336
LAI X, SHI J Y, PENG T Y, et al. Research on adsorption structure of wall climbing robot with variable density topology optimization[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 821-827.
doi: 10.13433/j.cnki.1003-8728.20200336
[6]   TRAN T H T, NGUYEN D S, VO N T, et al. Design of Delta robot arm based on topology optimization and generative design method[C]//2020 5th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Nov. 27-28, 2020.
[7]   CHU X Y, XU H H, SHAO G F, et al. Multi-objective topology optimization for industrial robot[C]//2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, Aug. 1-3, 2016.
[8]   黄永平,郭秋明.基于拓扑优化的起重机转台的轻量化设计[J].机电工程技术,2022,51(10):211-214. doi:10.3969/j.issn.1009-9492.2022.10.051
HUANG Y P, GUO Q M. Lightweight design of the crane turntable based on topology optimazation[J]. Mechanical & Electrical Engineering Technology, 2022, 51(10): 211-214.
doi: 10.3969/j.issn.1009-9492.2022.10.051
[9]   何健,何猛,夏凉,等.基于双向渐进结构优化法的柔性机构设计[J].机械工程学报,2021,57(19):39-47. doi:10.3901/jme.2021.19.004
HE J, HE M, XIA L, et al. Design of compliant actuation mechanisms by evolutionary structural optimization method[J]. Journal of Mechanical Engineering, 2021, 57(19): 39-47.
doi: 10.3901/jme.2021.19.004
[10]   BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
[11]   BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1: 193-202.
[12]   滕兆春,衡亚洲,刘露.非均匀 Winkler 弹性地基上变厚度矩形板自由振动的 DTM 求解[J].计算力学学报,2018,35(2):216-223. doi:10.7511/jslx20170217002
TENG Z C, HENG Y Z, LIU L. Free vibration analysis for rectangular plates with variable thickness resting on a non-uniform Winkler elastic foundation by DTM[J]. Chinese Journal of Computational Mechanics, 2018, 35(2): 216-223.
doi: 10.7511/jslx20170217002
[13]   LIU T, LI B, WANG S, et al. Eigenvalue topology optimization of structures using a parameterized level set method[J]. Structural and Multidisciplinary Optimization, 2014, 50: 573-591.
[14]   LING Z, ZHANG D, LIU C, et al. Topology optimization of a constrained layer damping plate coupled with an acoustical cavity[J]. International Journal of Acoustics and Vibration, 2016, 21(4): 394-405.
[15]   BENDSØE M P, SIGMUND O. Topology optimization: theory, methods, and applications[M]. Berlin: Springer-Verlag, 2003: 1-20.
[16]   STOLPE M, SVANBERG K. An alternative interpolation scheme for minimum compliance topology optimization[J]. Structural and Multidisciplinary Optimization, 2001, 22(2): 116-124.
[17]   罗震,陈立平,黄玉盈,等.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. doi:10.6052/1000-0992-2004-4-J2003-111
LUO Z, CHEN L P, HUANG Y Y, et al. Topological optimization design for continuum structures[J]. Advances in Mechanics, 2004, 34(4): 463-476.
doi: 10.6052/1000-0992-2004-4-J2003-111
[18]   管贻生,邓休,李怀珠,等.工业机器人的结构分析与优化[J].华南理工大学学报(自然科学版),2013,41(9):126-131. doi:10.3969/j.issn.1000-565X.2013.09.021
GUAN Y S, DENG X, LI H Z, et al. Structural analysis and optimization of industrial robot[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(9): 126-131.
doi: 10.3969/j.issn.1000-565X.2013.09.021
[19]   李帅,穆瑞芳,张壮志.基于 ANSYS Workbench 拓扑优化对止动架轻量化的研究[J].船舶工程,2016,38(7):35-39.
LI S, MU R F, ZHANG Z Z. Lightweight research of stop frame based on topological optimization of ANSYS Workbench[J]. Ship Engineering, 2016, 38(7): 35-39.
[1] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chin J Eng Design, 2023, 30(5): 579-589.
[2] Xiaoqiang ZHANG,Biwei LU,Jiaqin LIU,Yucheng WU. Topology optimization design and steady-state thermal analysis of fusion reactor divertor[J]. Chin J Eng Design, 2023, 30(5): 601-607.
[3] Xuelin DU,Wenhui YI,Jiahua ZOU,Can ZHOU,Li MAO,Lishi DENG,Ying LIU. Structure design and motion realization of multi-joint snakelike robot[J]. Chin J Eng Design, 2023, 30(4): 438-448.
[4] Zhan YANG,Qipeng LI,Wei TANG,Kecheng QIN,Suifan CHEN,Kaidi WANG,Yang LIU,Jun ZOU. Design and analysis of small land-air deformable amphibious robot[J]. Chin J Eng Design, 2023, 30(3): 325-333.
[5] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chin J Eng Design, 2023, 30(3): 334-341.
[6] Yue LI,Yunjiao DENG,Ran AO,Yulei HOU,Daxing ZENG. Structure design and motion analysis of pipeline dredging robot with diameter adjustment[J]. Chin J Eng Design, 2023, 30(3): 353-361.
[7] Yang DING,Minglu ZHANG,Xin JIAO,Manhong LI. Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors[J]. Chin J Eng Design, 2023, 30(2): 154-163.
[8] Ganhua YANG,Qingjun ZENG,Chunwei HAN,Xin HUANG,Xiaoqiang DAI. Design and implementation of soft hand position tracking for human-computer interactive teleoperation robot[J]. Chin J Eng Design, 2023, 30(2): 164-171.
[9] Chunyan ZHANG,Yiwen JIANG,Jie YANG,Xinxing JIANG. Variable-direction multi-terrain mobile full R pair parallel robot[J]. Chin J Eng Design, 2023, 30(2): 189-199.
[10] Yi-nan CHEN,Zhi-xin PU,Zhen-ni ZHENG. A novel vascular interventional surgery robot with force detection mechanism[J]. Chin J Eng Design, 2023, 30(1): 20-31.
[11] Shi-yang XU,Bing-hui WU,Dong-mei JI,Xin-yu DAI. Design and motion simulation of automatic inspection robot for power tunnel[J]. Chin J Eng Design, 2023, 30(1): 32-38.
[12] Hong-bin RUI,Lu-lu LI,Tian-ci WANG,Kai-wen DUAN. Research on dynamic modeling and motion control of amphibious turtle inspired robot[J]. Chin J Eng Design, 2023, 30(1): 73-81.
[13] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chin J Eng Design, 2022, 29(6): 695-704.
[14] Hui ZHANG,Yong-fei ZHU,Xue-fei LIU,Xiang-rong XU. Research on trajectory tracking control of metallurgical industrial robot based on fuzzy iterative Q-learning[J]. Chin J Eng Design, 2022, 29(5): 564-571.
[15] Jing-liang WANG,Tian-cheng ZHU,Long-biao ZHU,Fei-yun XU. Research on variable density topology optimization method for continuum structure[J]. Chin J Eng Design, 2022, 29(3): 279-285.