Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 154-163    DOI: 10.3785/j.issn.1006-754X.2023.00.022
Innovative Design     
Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors
Yang DING(),Minglu ZHANG,Xin JIAO,Manhong LI()
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
Download: HTML     PDF(3884KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The existing hexapod robots have shortcomings in single foot structure design, body layout and compliant motion control, resulting in weak terrain adaptability and low motion compliant performance. Therefore, observation experiment was conducted on a typical hexapod organism-ant. Based on the analysis of the physiological structure characteristic and driving mode of ant, basic principles applicable to the structure design of hexapod robot were proposed; based on the design of a low inertia single foot structure, an overall biomimetic structure of a hexapod robot driven by joint motors was proposed by optimizing the body layout of the robot; based on the gait of the straight and turning movements of the hexapod robot, a foot end trajectory combining trigonometric function curve and straight line was planned, and a compliant motion control method for the hexapod robot based on hierarchical control was proposed. The prototype experimental results showed that the hexapod robot had a reasonable structure design and could achieve relatively compliant straight and turning movements. The research results can provide important references for the design of robot biomimetic structure and compliant motion control.



Key wordshexapod robot      biomimetic structure design      compliant motion control      biological observation experiment      joint motor drive     
Received: 12 July 2022      Published: 06 May 2023
CLC:  TP 242  
Corresponding Authors: Manhong LI     E-mail: 13646193384@163.com;lmh9181219@163.com.cn
Cite this article:

Yang DING,Minglu ZHANG,Xin JIAO,Manhong LI. Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors. Chin J Eng Design, 2023, 30(2): 154-163.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.022     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/154


关节电机驱动六足机器人仿生结构设计与柔顺运动控制

现有六足机器人在单足结构设计、机体布置形式及柔顺运动控制等方面存在不足,导致其地形适应能力不强,运动柔顺性能不高。为此,开展了典型六足生物——蚂蚁的观测实验,基于蚂蚁生理结构特征和驱动方式分析,提出了适用于六足机器人结构设计的基本原则;基于低惯量单足结构设计,通过优化机器人机体布局,提出了关节电机驱动六足机器人整体仿生结构;基于六足机器人直行和转向运动步态,规划了三角函数曲线与直线相结合的足端轨迹,提出了基于分级控制的六足机器人柔顺运动控制方法。样机实验结果表明,六足机器人结构设计合理,能够实现相对柔顺的直行和转向运动。研究结果可以为机器人仿生结构设计及柔顺运动控制提供重要参考。


关键词: 六足机器人,  仿生结构设计,  柔顺运动控制,  生物观测实验,  关节电机驱动 
Fig.1 Physiological structure of ant
样本足股节长度/mm胫节长度/mm跗节长度/mm股节长度∶胫节长度∶跗节长度
样本1前足2.372.211.121.072∶1∶0.507
样本1中足2.562.541.211.008∶1∶0.476
样本1后足3.293.061.511.075∶1∶0.493
样本2前足2.041.911.011.068∶1∶0.529
样本2中足2.232.101.061.062∶1∶0.505
样本2后足2.432.311.151.057∶1∶0.498
样本3前足1.911.750.901.091∶1∶0.514
样本3中足1.981.860.981.065∶1∶0.527
样本3后足2.412.261.131.066∶1∶0.500
Table 1 Length of each foot of ant
样本LM1LM2DM1DM2DM3
样本11.731.771.741.841.77
样本21.741.781.731.871.74
样本31.631.661.661.761.68
Table 2 Distribution dimension of each foot of ant
Fig.2 Single foot drive system of ant
Fig.3 Overall structure of hexapod robot
Fig.4 Single foot structure of hexapod robot
Fig.5 Body layout scheme of hexapod robot
Fig.6 Schematic of straight motion of hexapod robot
Fig.7 Schematic of turning motion of hexapod robot
Fig.8 Schematic of kinematics coordinate system of hexapod robot
Fig.9 Foot end trajectory curve of hexapod robot
Fig.10 Architecture of compliant motion control system for hexapod robot
Fig.11 Prototype of hexapod robot
性能指标量值
质量15.4 kg
机体尺寸400 mm×300 mm×50 mm
股节长度175 mm
胫节长度200 mm
基节转角-1.2~1.2 rad
股节转角-0.8~1.5 rad
胫节转角0.5~2.1 rad
足端定位精度≤1 mm
Table 3 Performance index of hexapod robot
Fig.12 Joint angle of hexapod robot
Fig.13 Body height of hexapod robot during straight motion
Fig.14 Straight motion trajectory of hexapod robot
Fig.15 Turning motion trajectory of hexapod robot
[1]   尤波,李鲲鹏,李佳钰,等.单腿失效的六足机器人失稳调整与容错步态设计[J].机械工程学报,2021,57(1):100-109. doi:10.3901/JME.2021.01.100
YOU B, LI K P, LI J Y, et al. Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot[J]. Journal of Mechanical Engineering, 2021, 57(1): 100-109.
doi: 10.3901/JME.2021.01.100
[2]   陈斯琴,李思瑶,鲁志刚,等.六足机器人关键技术综述[J]. 机电工程技术,2022,51(11):146-152. doi:10.3969/j.issn.1009-9492.2022.11.036
CHEN S Q, LI S Y, LU Z G, et al. Review on key technology of the hexapod robot[J]. Mechanical & Electrical Engineering Technology, 2022, 51(11): 146-152.
doi: 10.3969/j.issn.1009-9492.2022.11.036
[3]   杨政,马春燕,窦银科,等.步履式全地形六足机器人[J]. 液压与气动,2022,46(1):109-116. doi:10.11832/j.issn.1000-4858.2022.01.013
YANG Z, MA C Y, DOU Y K, et al. Walking all-terrain hexapod robot[J]. Chinese Hydraulics & Pneumatics, 2022, 46(1): 109-116.
doi: 10.11832/j.issn.1000-4858.2022.01.013
[4]   XU S L, HE B, HU H M. Research on kinematics and stability of a bionic wall-climbing hexapod robot[J]. Applied Bionics and Biomechanics, 2019: 1-17.
[5]   张明路,王哲,李满宏,等.基于足端位置的六足机器人漫游地形感知与表征[J].机械工程学报,2021,57(19):48-60. doi:10.3901/jme.2021.19.005
ZHANG M L, WANG Z, LI M H, et al. Perception and representation of roaming terrain for a hexapod robot based on foot positions[J]. Journal of Mechanical Engineering, 2021, 57(19): 48-60.
doi: 10.3901/jme.2021.19.005
[6]   李满宏,张明路,张建华,等.基于增强学习的六足机器人自由步态规划[J].机械工程学报,2019,55(5):36-44. doi:10.3901/jme.2019.05.036
LI M H, ZHANG M L, ZHANG J H, et al. Free gait planning for a hexapod robot based on reinforcement learning[J]. Journal of Mechanical Engineering, 2019, 55(5): 36-44.
doi: 10.3901/jme.2019.05.036
[7]   刘蕴红,杨德晓.基于力反馈-中枢模式发生器模型的六足机器人控制器[J].科学技术与工程,2018,18(17):67-74. doi:10.3969/j.issn.1671-1815.2018.17.012
LIU Y H, YANG D X. A contoller for hexapod robot based on force feedlack-central pattem generator[J]. Science Technology and Engineering, 2018, 18(17): 67-74.
doi: 10.3969/j.issn.1671-1815.2018.17.012
[8]   芮宏斌,李路路,曹伟,等.轮-履-腿复合仿生机器人步态规划及越障性能分析[J].工程设计学报,2022,29(2):133-142. doi:10.3785/j.issn.1006-754X.2022.00.031
RUI H B, LI L L, CAO W, et al. Gait planning and obstacle-surmounting performance analysis of wheel-track-leg composite bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 133-142.
doi: 10.3785/j.issn.1006-754X.2022.00.031
[9]   王宇,周爽,李亚鑫.水陆两栖六足机器人的设计与性能评估[J].中国机械工程,2022,43(11): 274-282. doi:10.3969/j.issn.1004-132X.2022.17.009
WANG Y, ZHOU S, LI Y X. Design and performance evaluation of amphibious hexapod robots[J]. China Mechanical Engineering, 2022, 43(11): 274-282.
doi: 10.3969/j.issn.1004-132X.2022.17.009
[10]   朱国杰,田文凯,吕承哲,等.六足仿生机器人机构与控制系统设计[J].测控技术,2017,36(1):55-58. doi:10.3969/j.issn.1000-8829.2017.01.013
ZHU G J, TIAN W K, LÜ C Z, et al. Control system and mechanism design for hexapod robots[J]. Measurement & Control Technology, 2017, 36(1): 55-58.
doi: 10.3969/j.issn.1000-8829.2017.01.013
[11]   史延雷,张小俊,张明路.主-被动复合变刚度柔性关节设计与分析[J].机械工程学报,2018,54(3):55-62. doi:10.3901/jme.2018.03.055
SHI Y L, ZHANG X J, ZHANG M L. Design and analysis of an active-passive variable stiffness flexible joint[J]. Journal of Mechanical Engineering, 2018, 54(3): 55-62.
doi: 10.3901/jme.2018.03.055
[12]   曲祥旭,曹东兴,张姗.一种扭簧变刚度柔性关节的设计与研究[J].机械工程学报,2021,57(13):114-123. doi:10.3901/jme.2021.13.114
QU X X, CAO D X, ZHANG S. Design and research of a variable stiffness compliant joint based on torsional spring[J]. Journal of Mechanical Engineering, 2021, 57(13): 114-123.
doi: 10.3901/jme.2021.13.114
[13]   HUTTER M, GEHRING C, JUD D, et al. ANYmal: A highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, USA: IEEE, 2016: 38-44.
[14]   KATZ B G. A low cost modular actuator for dynamic robots[D]. Boston, USA: Massachusetts Institute of Technology, 2018: 12-33.
[15]   陈媛.六足移动机器人的仿生机构设计与运动学分析[D].天津:河北工业大学,2015:19-52.
CHEN Y. Bionic mechanism design and kinematic analysis of hexapod mobile robot[D]. Tianjin: Hebei University of Technology, 2015: 19-52.
[16]   蒋晋东,郭伟,查富生,等.六足生物的反射运动机理实验研究[J].制造业自动化,2009,31(9):14-17. doi:10.3969/j.issn.1009-0134.2009.09.005
JIANG J D, GUO W, ZHA F S, et al. The experimental research on reflex theory of insects[J]. Manufacturing Automation, 2009, 31(9): 14-17.
doi: 10.3969/j.issn.1009-0134.2009.09.005
[17]   张雨航,钱亚伟,鲁航.六足全地形机器人结构设计[J]. 现代机械,2021(5):8-11.
ZHANG Y H, QIAN Y W, LU H. Structural design of a hexapod all-terrain robot[J]. Modern Machinery, 2021(5): 8-11.
[18]   徐海燕,姜树海,徐振亚,等.六足仿生虎甲虫机器人结构设计与静力学分析[J].现代制造工程,2018(11):54-59. doi:10.16731/j.cnki.1671-3133.2018.11.010
XU H Y, JIANG S H, XU Z Y, et al. Structural design and static analysis of a tiger-beetle-like hexapod robot[J]. Modern Manufacturing Engineering, 2018(11): 54-59.
doi: 10.16731/j.cnki.1671-3133.2018.11.010
[19]   宫丽男,庞在祥.基于ADAMS的六足仿生机器人结构设计及运动仿真[J].机械传动,2018,42(3):49-53.
GONG L N, PANG Z X. Structure design and kinematic simulation of biomimetic hexapod robot based on the ADAMS[J]. Journal of Mechanical Transmission, 2018, 42(3): 49-53.
[20]   乔栋,姚涛,王玉龙,等.六足机器人步态仿真与实验研究[J].机床与液压,2021,49(19):32-37. doi:10.3969/j.issn.1001-3881.2021.19.007
QIAO D, YAO T, WANG Y L, et al. Gait simulation and experimental study of hexapod robot based on virtual prototyping technology[J]. Machine Tool & Hydraulics, 2021, 49(19): 32-37.
doi: 10.3969/j.issn.1001-3881.2021.19.007
[21]   马慧姝,刘艳霞,方建军,等.四足仿生机器人仿生足端轨迹规划研究[J].东北师大学报(自然科学版),2019,51(3):66-71.
MA H S, LIU Y X, FANG J J, et al. Research on bionic foot-end trajectory planning for bionic quadruped robot[J]. Journal of Northeast Normal University (Natural Science Edition), 2019, 51(3): 66-71.
[22]   陈瑞晓.六足机器人步态规划与运动仿真[J].现代制造技术与装备,2020(6): 35-37. doi:10.3969/j.issn.1673-5587.2020.06.013
CHEN R X. Hexapod robot gait planning and motion simulation[J]. Modern Manufacturing Technology and Equipment, 2020(6): 35-37.
doi: 10.3969/j.issn.1673-5587.2020.06.013
No related articles found!