Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 164-171    DOI: 10.3785/j.issn.1006-754X.2023.00.027
Optimization Design     
Design and implementation of soft hand position tracking for human-computer interactive teleoperation robot
Ganhua YANG(),Qingjun ZENG(),Chunwei HAN,Xin HUANG,Xiaoqiang DAI
College of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Download: HTML     PDF(2837KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the requirements of teleoperation robots grasping soft or fragile objects in unknown environments such as the deep sea, a master-slave soft hand position tracking method for human-computer interactive teleoperation robot was proposed. Firstly, the structure and working principle of the master-slave soft hand control system were introduced. The system mainly included the master control loop, acommunication link and slave control loop, which was used to control the grasping action of the soft hand. Then, the modeling process and controller design of the soft finger were described. The hypothetical modal method was used to model the soft finger, and the model predictive control algorithm was introduced into the position tracking control of the soft finger to solve the problem of poor performance of the soft slave hand tracking soft master hand. Finally, the soft master hand, soft slave hand and their control systems were designed and developed, in which the soft slave hand was made of silicone and embedded with solid materials to increase the stiffness. Meanwhile, the experiment of soft slave hand tracking soft master hand to grasp the target object was conducted. The simulation results showed that the designed model predictive controller could effectively solve the problem of control accuracy degradation caused by model mismatch for soft fingers; the experimental results showed that the developed soft slave hand could effectively track the soft master hand to grasp the target objects, and the entire control system ran well. The research results provide a reference for the tracking control application of soft hands of human-computer interactive teleoperation robot.



Key wordsteleoperation robot      soft hand      position tracking      model predictive control algorithm     
Received: 13 September 2022      Published: 06 May 2023
CLC:  TH 122  
Corresponding Authors: Qingjun ZENG     E-mail: 971740646@qq.com;zheng28501@163.com
Cite this article:

Ganhua YANG,Qingjun ZENG,Chunwei HAN,Xin HUANG,Xiaoqiang DAI. Design and implementation of soft hand position tracking for human-computer interactive teleoperation robot. Chin J Eng Design, 2023, 30(2): 164-171.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.027     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/164


人机交互遥操作机器人软体手位置跟踪设计与实现

针对遥操作机器人在深海等未知环境中抓取软体物体或易碎物体的工作需求,提出了一种人机交互遥操作机器人的主从软体手位置跟踪方法。首先,介绍了主从软体手控制系统的构成与工作原理,该系统主要包括主端控制回路、通信链路和从端控制回路,用于控制软体手的抓取动作。然后,阐述了软体手指的建模过程与控制器设计,采用假设模态法进行建模,并在软体手指的位置跟踪控制中引入模型预测控制算法,以解决软体从手跟踪软体主手性能差的问题。最后,设计并研制了软体主手、软体从手及其控制系统,其中软体从手以硅胶为原料并嵌入固体材料来增大刚度,同时开展了软体从手跟踪软体主手抓握目标物体的实验。仿真结果表明,所设计的模型预测控制器能有效解决软体手指因模型失配而引起的控制精度下降问题;实验结果表明,所研制的软体从手能有效跟踪软体主手并实现目标物体的抓握,整个控制系统运行良好。研究结果为人机交互遥操作机器人软体手的跟踪控制应用提供了参考。


关键词: 遥操作机器人,  软体手,  位置跟踪,  模型预测控制算法 
Fig.1 Composition and working principle of master-slave soft hand control system for human-computer interactive teleoperation robot
Fig.2 Three-dimensional model of soft index finger
Fig.3 Simplified three-link soft index finger
Fig.4 Variables involved in the bending process of soft index finger
Fig.5 Comparison of end position tracking simulation results of soft index finger
控制器跟踪误差绝对值/rad末端偏移量绝对值/mm
C11.243 20.583 5
C24.592 20.558 3
Table 1 Comparison of performance evaluation indicators between two controllers
Fig.6 Composition of soft master hand control system
Fig.7 Master-slave soft hand control system experimental platform
Fig.8 Soft slave hand index finger follows soft master hand index finger
Fig.9 Soft slave hand follows soft master hand to grasp square object
Fig.10 Soft slave hand follows soft master hand to grasp cylindrical object
Fig.11 Comparison of bending angle of index finger between soft master hand and soft slave hand
时间/s食指弯曲角度/(°)
软体主手软体从手
000
0.6150
1.22816
1.85329
2.47055
3.07471
3.67275
4.27472
4.87174
5.47571
6.07275
Table 2 Bending angle of index finger of soft master hand and soft slave hand within first six seconds
[10]   杨淦华,曾庆军,韩春伟,等.基于软体手的机器人遥操作人机交互系统研制[J].测控技术,2023,42(4):94-98. doi:10.19708 /j.ckjs.2023.01.204
YANG G H, ZENG Q J, HAN C W, et al. Development of robot teleoperation human-computer interaction system based on soft hand[J]. Measurement & Control Technology, 2023, 42(4): 94-98.
doi: 10.19708 /j.ckjs.2023.01.204
[11]   RUS D L, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
[12]   高强.基于假设模态法的柔性机械臂瞬时变形响应分析[J].自动化与仪器仪表,2019(12):65-67. doi:10.14016/j.cnki.1001-9227.2019.12.065
GAO Q. Analysis of transient deformation response for flexible robotic manipulator using assumed mode method[J]. Automation and Instrumentation, 2019(12): 65-67.
doi: 10.14016/j.cnki.1001-9227.2019.12.065
[13]   POLYGERINOS P, WANG Z, GALLOWAY K, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics & Autonomous Systems, 2014, 73: 135-143.
[14]   DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1): 161-185.
[15]   GUPTA A, EPPNER C, LEVINE S, et al. Learning dexterous manipulation for a soft robotic hand from human demonstration[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon: IEEE, 2016: 3786-3793.
[16]   张潇,张秋菊.基于柔性腕手的最优抓取规划研究[J].工程设计学报,2020,27(3):307-316. doi:10.3785/j.issn.1006-754X.2020.00.045
ZHANG X, ZHANG Q J. Research on optimal grasping planning based on flexible wrist-hand[J]. Chinese Journal of Engineering Design, 2020, 27(3): 307-316.
doi: 10.3785/j.issn.1006-754X.2020.00.045
[17]   陈罡,吴菁,金贵阳,等.驱控一体7DOF机械臂位置控制技术研究[J].机电工程,2022,39(12):1747-1754. doi:10.3969/j.issn.1001-4551.2022.12.015
CHEN G, WU J, JIN G Y, et al. Position control technology of drive integrated 7DOF manipulator[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(12): 1747-1754.
doi: 10.3969/j.issn.1001-4551.2022.12.015
[1]   宋爱国.力觉临场感遥操作机器人(1):技术发展与现状[J].南京信息工程大学学报(自然科学版),2013,5(1):1-19. doi:10.13878/j.cnki.jnuist.2013.01.001
SONG A G. Force telepresence telerobot (1): review of the history and development[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2013, 5(1): 1-19.
doi: 10.13878/j.cnki.jnuist.2013.01.001
[18]   WOOSOON Y, SINGH S N. Predictive end-point trajectory control of elastic manipulators[J]. Journal of Robotic System, 1996, 13(9): 561-569.
[2]   倪得晶,宋爱国,李会军.基于虚拟现实的机器人遥操作关键技术研究[J].仪器仪表学报,2017,38(10):2351-2363. doi:10.3969/j.issn.0254-3087.2017.10.001
NI D J, SONG A G, LI H J. Survey on robot teleoperation based on virtual reality[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2351-2363.
doi: 10.3969/j.issn.0254-3087.2017.10.001
[3]   王田苗,郝雨飞,杨兴帮,等.软体机器人:结构、驱动、传感与控制[J].机械工程学报,2017,53(13):1-13. doi:10.3901/jme.2017.13.001
WANG T M, HAO Y F, YANG X B, et al. Soft robotics: structure, actuation, sensing and control[J]. Journal of Mechanical Engineering, 2017, 53(13): 1-13.
doi: 10.3901/jme.2017.13.001
[4]   GERBONI G, DIODATO A, CIUTI G, et al. Feedback control of soft robot actuators via commercial flex bend sensors[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1881-1888.
[5]   姚建涛,陈新博,陈俊涛,等.软体机械手遥操作系统的设计与分析[J].中国机械工程,2020,31(16):1968-1977. doi:10.3969/j.issn.1004-132X.2020.16.009
YAO J T, CHEN X B, CHEN J T, et al. Design and analysis of soft manipulator teleoperation systems[J]. Chinese Mechanical Engineering, 2020, 31(16): 1968-1977.
doi: 10.3969/j.issn.1004-132X.2020.16.009
[6]   HAO Y F, GONG Z Y, XIE Z X, et al. Universal soft pneumatic robotic gripper with variable effective length[C]//2016 35th Chinese Control Conference (CCC), Chengdu, Jul. 27-29, 2016.
[7]   韩非,张道辉,赵新刚.基于弯曲度预测模型的软体手人机交互控制[J].自动化与仪表,2022,37(7):43-47. doi:10.19557/j.cnki.1001-9944.2022.07.009
HAN F, ZHANG D H, ZHAO X G. Human-computer interaction control of soft hand based on bending prediction model[J]. Automation and Instrumentation, 2022, 37(7): 43-47.
doi: 10.19557/j.cnki.1001-9944.2022.07.009
[8]   帅鑫,李艳君,吴铁军.一种柔性机械臂末端轨迹跟踪的预测控制算法[J].浙江大学学报(工学版),2010,44(2):259-264. doi:10.3785/j.issn.1008-973X.2010.02.009
SHUAI X, LI Y J, WU T J. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(2): 259-264.
doi: 10.3785/j.issn.1008-973X.2010.02.009
[9]   胡万强,王红玲,吴张永,等.气动伺服机械手的预测模糊自整定PID控制研究[J].机械设计与制造,2009(1):169-171. doi:10.3969/j.issn.1001-3997.2009.01.066
HU W Q, WANG H L, WU Z Y, et al. The research of predictive fuzzy self-tuning PID control in pneumatic servo manipulator[J]. Machinery Design and Manufacture, 2009(1): 169-171.
doi: 10.3969/j.issn.1001-3997.2009.01.066
No related articles found!