Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 189-199    DOI: 10.3785/j.issn.1006-754X.2023.00.029
Design for Quality     
Variable-direction multi-terrain mobile full R pair parallel robot
Chunyan ZHANG1(),Yiwen JIANG1,Jie YANG1,Xinxing JIANG2
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
2.Huahong Semiconductor Co. , Ltd. , Wuxi 214142, China
Download: HTML     PDF(7772KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the ability of parallel robots to adapt to multiple complex terrain environments, a variable-direction multi-terrain mobile full R pair parallel robot was proposed by combining the advantages of reconfigurable parallel robots and multi-motion mode mobile robots. Based on the spatial axis relation of adjacent kinematic pairs, a closed chain mechanism with three-direction rotation ability was constructed by taking the planar single-ring 4R mechanism as the body. Based on the orthogonal spatial geometric relation, two closed chains with full R pairs were formed into an omni-directional mobile parallel mechanism which could realize multiple rolling modes through geometric deformation and self-reconstruction. Then, the degree of freedom analysis and verification, gait planning simulation and motion control design for the designed parallel robot were carried out. Finally, the robot prototype was made to verify the feasibility of the robot design scheme and its motion mode through experiments. The results showed that using geometric deformation and self-reconstruction could improve the ability of parallel robots to adapt to multiple complex terrain environments. The research results can provide a new idea for the design of multi-mode parallel mobile robots.



Key wordsvariable-direction mobile      full R pair parallel robot      multi-terrain mobile      motion control design     
Received: 10 October 2022      Published: 06 May 2023
CLC:  TP 242  
Cite this article:

Chunyan ZHANG,Yiwen JIANG,Jie YANG,Xinxing JIANG. Variable-direction multi-terrain mobile full R pair parallel robot. Chin J Eng Design, 2023, 30(2): 189-199.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.029     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/189


可变向多地形移动全R副并联机器人

为了提升并联机器人适应多重复杂地形环境的能力,通过结合可重构并联机器人与多运动模式移动机器人的优势,提出了一种可变向多地形移动全R副并联机器人。以平面单环4R机构为本体,基于相邻运动副的空间轴线关系构造具有三方向转动能力的闭链机构,并以此为本体,基于正交的空间几何关系,将2个全R副单闭链组成一个可通过几何变形和自重构的方式实现多种滚动模式的全向移动并联机构。然后,对所设计的并联机器人进行自由度理论分析验证、步态规划仿真及运动控制设计。最后,制作机器人样机,通过实验来验证机器人设计方案及其运动模式的可行性。结果表明,使用几何变形和自重构的方式可提升并联机器人适应多重复杂地形环境的能力。研究结果可为多模式并联移动机器人的设计提供新思路。


关键词: 可变向移动,  全R副并联机器人,  多地形移动,  运动控制设计 
Fig.1 Topological evolution process of variable-direction multi-terrain mobile full R pair parallel mechanism
Fig.2 Multi-mode motion mechanism of variable-direction multi-terrain mobile full R pair parallel mechanism
运动模式构型示意支链简图运动旋量约束旋量自由度
可变向滚动$12=(0?1?0?;a2?0?c2)$13=(1?0?0?;0??b3?c3)$14=(1?0?0?;0??0??c4)$15=(0?1?0?;0??0??c5)$11r=(0??0?0?;0???0??1)$12r=(a6?0?1?;b6?c6?0)2
变宽度滚动$11=(0??0??1;a1??0???0)$12=(0??1??0;a2??0??c2)$13=(1??0??0;?0???b3?c3)$14=(1??0??0;?0???0??c4)$15=(0??1??0;?0???0??c5)$16=(0??0??1;?0???0???0)6
跨越式滚动$11=(0??0??1;0??0??0)$16=(0??0??1;0??0??0)$11r=(1?0?0;0?0?0)$12r=(0?1?0;0?0?0)$13r=(0?0?1;0?0?0)$14r=(0?0?0;1?0?0)$15r=(0?0?0;0?1?0)4
低重心滚动$11=(0??0??1;0??0??0)$16=(0??0??1;0??0??0)$11r=(1?0?0;0?0?0)$12r=(0?1?0;0?0?0)$13r=(0?0?1;0?0?0)$14r=(0?0?0;1?0?0)$15r=(0?0?0;0?1?0)4
Table 1 DOF analysis of variable-direction multi-terrain mobile full R pair parallel mechanism under different motion modes
Fig.3 Servo distribution diagram of robot
Fig.4 Gait planning of variable-direction rolling mode
Fig.5 Gait planning of variable-width rolling mode
Fig.6 Gait planning of leapfrog rolling mode
Fig.7 Gait planning of low gravity center rolling mode
Fig.8 Robot motion mode switching diagram
Fig.9 Adaptive gait planning process of robot
Fig.10 Dumping recovery motion planning of robot
Fig.11 Schematic diagram of robot dumping recovery
Fig.12 Servo control logic topology diagram
Fig.13 Servo control logic of variable width rolling mode
Fig.14 Servo control logic of leapfrog rolling mode
Fig.15 Process of robot motion control system
Fig.16 Structure of robot control system
Fig.17 Simulation results of robot variable-direction rolling motion morphology
Fig.18 Simulation results of robot variable-width rolling motion morphology
Fig.19 Simulation results of robot leapfrog rolling motion morphology
Fig.20 Simulation results of robot low gravity center rolling motion morphology
Fig.21 Robot physical prototype
参数数值
质量/kg2.6
工作电压/V5
初始高度/mm340
初始宽度/mm315
电源模块/V12
Table 2 Parameters of robot physical prototype
Fig.22 Robot variable-direction rolling experiment site
Fig.23 Robot variable-width rolling experiment site
Fig.24 Robot leapfrog rolling experiment site
Fig.25 Robot low gravity center rolling experiment site
Fig.26 Experimental results of robot rolling in unstructured terrain
[1]   张元勋,黄靖,韩亮亮.星表移动探测机器人研究现状综述[J].航空学报,2021,42(1):523909. doi:10.7527/S1000-6893.2020.23909
ZHANG Y X, HUANG J, HAN L L. Research status of planetary surface mobile exploration robots: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523909.
doi: 10.7527/S1000-6893.2020.23909
[2]   陈志华,汪首坤,王军政,等.电动并联六轮足机器人的运动驱动与多模态控制方法[J].机器人,2020,42(5):534-549.
CHEN Z H, WANG S K, WANG J Z, et al. Motion drive and multi-mode control method of an electric parallel six wheel-legged robot[J]. Robot, 2020, 42(5): 534-549.
[3]   汪真西.一种用于水下探测的混动仿生机器鱼[J].科技与创新,2022(15):73-75.
WANG Z X. A hybrid bionic robotic fish for underwater detection[J] Science, Technology and Innovation, 2022(15): 73-75.
[4]   谢同雨,李清,丁煜文,等.多模块蛇形管道打磨机器人的设计与分析[J].机器人,2020,42(6):672-685.
XIE T Y, LI Q, DING Y W, et al. Design and analysis of a multi-module snake shaped pipeline grinding robot[J]. Robot, 2020, 42(6): 672-685.
[5]   陈宇航,赵铁石,郭建纲,等.双模融合6-[(RPRRRP)R-R]US并联机构运动学分析[J].农业机械学报,2022,53(5):438-448. doi:10.6041/j.issn.1000-1298.2022.05.048
CHEN Y H, ZHAO T S, GUO J G, et al. Kinematic analysis of dual mode fusion 6-[(RPRRRP) R-R] US parallel mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 438-448.
doi: 10.6041/j.issn.1000-1298.2022.05.048
[6]   于靖军,刘凯,孔宪文.多模式机构研究进展[J].机械工程学报,2020,56(19):14-27. doi:10.3901/jme.2020.19.014
YU J J, LIU K, KONG X W. State of the art of multi-mode mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(19): 14-27.
doi: 10.3901/jme.2020.19.014
[7]   WEI C R, WU J X, SUN J, et al. Reconfigurable design of a passive locomotion closed-chain multi-legged platform for terrain adaptability[J]. Mechanism and Machine Theory: Dynamics of Machine Systems Gears and Power Trandmissions Robots and Manipulator Systems Computer-Aided Design Methods, 2022, 174: 104936.
[8]   HAUSER S, MUTLU M, LÉZIART P A, et al. Roombots extended: challenges in the next generation of self-reconfigurable modular robots and their application in adaptive and assistive furniture[J]. Robotics and Autonomous Systems, 2020, 127: 103467.
[9]   徐帅,尤晶晶,叶鹏达,等.一种可重构3-RRR平面并联机构及其工作空间分析[J].南京航空航天大学学报, 2022,54(3):466-472.
XU S, YOU J J, YE P D, et al. A reconfigurable 3-RRR planar parallel mechanism and its workspace analysis[J] Journal of Nanjing University of Aeronautics and Astronautics, 2022, 54(3): 466-472.
[10]   倪聪,杨崇倡,刘香玉,等.基于Klann连杆的球腿复合机器人的设计与研究[J].机器人,2020,42(4):436-447.
NI C, YANG C C, LIU X Y, et al. Design and research on a ball-legged compound robot based on Klann linkage[J]. Robot, 2020, 42(4): 436-447.
[11]   XU K, WANG S K, YUE B K, et al. Adaptive impedance control with variable target stiffness for wheel-legged robot on complex unknown terrain[J]. Mechatronics, 2020, 69: 102388.
[12]   张春燕,平安.含折展平台的多模式移动并联机构设计与运动特性分析[J].农业机械学报,2022,53(3):449-458. doi:10.6041/j.issn.1000-1298.2022.03.048
ZHANG C Y, PING A. Design and kinematic characteristics analysis of multi-mode mobile parallel mechanism with folding and unfolding platform[J] Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 449-458.
doi: 10.6041/j.issn.1000-1298.2022.03.048
[13]   郝艳玲,李锐明,孙学敏,等.可重构立方体机构的设计与运动模式分析[J].机械工程学报,2020,56(13):120-127. doi:10.3901/jme.2020.13.120
HAO Y L, LI R M, SUN X M, et al. Design and motion pattern analysis of reconfigurable cube mechanism[J] Journal of Mechanical Engineering, 2020, 56(13): 120-127.
doi: 10.3901/jme.2020.13.120
[14]   JIANG H, XU G Y, ZENG W, et al. Design and kinematic modeling of a passively-actively transformable mobile robot[J]. Mechanism & Machine Theory, 2019, 142:103591.doi:10.1016/j.mechmachtheory. 2019.103591
doi: 10.1016/j.mechmachtheory. 2019.103591
[15]   PING A, ZHANG C Y, YANG J. Design and kinematic analysis of new multi-mode mobile parallel mechanism with deployable platform[J]. Industrial Robot, 2022, 49(5): 885-902. doi:10.1108/IR-09-2021-0216 .
doi: 10.1108/IR-09-2021-0216
[16]   秦日鹏,徐坤,陈佳伟,等.一种星球探测六足轮腿机器人的设计与运动规划[J].航空学报,2021,42(1):524244.
QIN R P, XU K, CHEN J W, et al. Design and motion planning of a wheel-legged hexapod robot for planet exploration[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 524244.
[17]   TIAN Y B, ZHANG D, YAO Y A, et al. A reconfigurable multi-mode mobile parallel robot[J]. Mechanism and Machine Theory, 2017, 111: 39-65.
[18]   WEI X Z, TIAN Y B, WEN S S. Design and locomotion analysis of a novel modular rolling robot[J]. Mechanism and Machine Theory, 2019, 133: 23-43.
[19]   LIU C H, YAO Y A, LI R M, et al. Rolling 4R linkages[J]. Mechanism and Machine Theory, 2012, 48: 1-14.
[20]   WANG J Y, YAO Y A, KONG X W. A reconfigurable tri-prism mobile robot with eight modes[J]. Robotica, 2018, 36(10): 1454-1476.
[21]   LIU X Y, ZHANG C Y, NI C, et al. A reconfigurable multi-mode walking-rolling robot based on motor time-sharing control[J]. Industrial Robot, 2019, 47 (2): 293-311.
[22]   张春燕,刘香玉,倪聪,等.基于单环运动链的多模式移动机构型综合[J].机械传动,2020,44(4):17-25,53.
ZHANG C Y, LIU X Y, NI C, et al. Multi mode mobile mechanism type synthesis based on single loop kinematic chain[J] Mechanical transmission, 2020, 44(4): 17-25, 53.
No related articles found!