Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 200-211    DOI: 10.3785/j.issn.1006-754X.2023.00.023
Design for Quality     
Research on error averaging mechanism of linear feed system for precision machine tools
Guangming SUN1,2(),Dawei ZHANG1,Mingze SUN3,Pengfei XU1,Faze CHEN1,Zhijun LI4
1.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China
2.School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
3.School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300082, China
4.State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(5153KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The phenomenon of error averaging in the linear feed system of precision machine tools is a key concern in machine tool accuracy design. Taking a typical linear feed system with double guide rails and four sliders in precision horizontal machining center as the research object, the averaging mechanism between the geometric error of rolling guide rail pair and the motion error of workbench was emphatically studied. Firstly, the equivalent stiffness method based on transfer function was used to establish the mapping relationship between the geometric error of guide rail and the motion error of workbench, and the error averaging mechanism was revealed by taking the normal straightness error as an example. Then, the finite element model of the linear feed system with double guide rails and four sliders was established, and the averaging coefficients of the geometric error of guide rail and the motion error of workbench were analyzed. Finally, an error averaging mechanism analysis experiment was conducted to verify the correctness of the theoretical analysis and simulation analysis by measuring the geometric error of guide rail and the motion error of workbench and calculating the error averaging coefficient. The research results provide a theoretical basis for the accuracy design of machine tools.



Key wordsprecision machine tool      linear feed system      error averaging      averaging coefficient     
Received: 18 July 2022      Published: 06 May 2023
CLC:  TH 122  
Cite this article:

Guangming SUN,Dawei ZHANG,Mingze SUN,Pengfei XU,Faze CHEN,Zhijun LI. Research on error averaging mechanism of linear feed system for precision machine tools. Chin J Eng Design, 2023, 30(2): 200-211.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.023     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/200


精密机床直线进给系统误差均化机理研究

精密机床直线进给系统的误差均化现象是机床精度设计中的重点关注问题。以精密卧式加工中心中典型的双导轨四滑块直线进给系统为研究对象,重点研究滚动导轨副几何误差与工作台运动误差之间的均化机理。首先,利用基于传递函数的等效刚度法,建立了导轨几何误差与工作台运动误差之间的映射关系,并以法向直线度误差为例揭示了误差均化机理。然后,建立了双导轨四滑块直线进给系统有限元模型,分析了导轨几何误差与工作台运动误差的均化系数。最后,开展了误差均化机理分析实验,通过测量导轨几何误差和工作台运动误差并计算误差均化系数,验证了理论分析与仿真分析的正确性。研究结果为机床的精度设计提供了理论依据。


关键词: 精密机床,  直线进给系统,  误差均化,  均化系数 
Fig.1 Linear feed system with double guide rails and four sliders
Fig.2 Single slider mechanical model
Fig.3 Force analysis of slider under the action of geometric error of guide rail
Fig.4 Static balance model of linear feed system with double guide rails and four sliders
Fig.5 Effect of wavelength of guide rail geometric error on error averaging coefficient of workbench straightness error
Fig.6 Effect of amplitude of guide rail geometric error on error averaging coefficient of workbench straightness error
参数导轨和滑块工作台
材料马氏体不锈钢QT500
密度/(g/cm3)7.757.0
弹性模量/GPa206162
泊松比0.30.293
Table 1 Material attribute setting for single slider finite element model
Fig.7 Mapping relationship between roller pre-tightening and geometric error of guide rail
Fig.8 Geometric relationship of contact between roller and raceway surface
Fig.9 Single slider finite element model based on spring element method
Fig.10 Comparison of contact stiffness curves of single roller
Fig.11 Comparison of static stiffness curves of slider
Fig.12 Finite element model of linear feed system with double guide rails and four sliders
Fig.13 Schematic diagram of geometric error form of guide rail
Fig.14 Geometric error forms of guide rail corresponding to different coefficients p
Fig.15 Influence of coefficient p on straightness error of workbench
Fig.16 Geometric error forms of guide rail corresponding to different coefficients q
Fig.17 Influence of coefficient q on straightness error of workbench
Fig.18 Geometric error forms of guide rail corresponding to different coefficients τ
Fig.19 Influence of coefficient τ on straightness error of workbench
参数数值
床身1 800×600×485
工作台570×550×102
导轨跨距474
滑块间距443
Table 2 Parameters of experimental platform for error averaging mechanism analysis
仪器及工具用途备注
光电准直仪用于测量导轨安装基面、滑块面和工作台的直线度误差AIM系列,分辨率为0.01'',精度为0.1''
扭矩扳手对导轨的固定螺栓施加规定的拧紧力矩力矩为5~60 Nm
水平仪平行度测量和角度调整0.02 mm/m
Table 3 Instruments and tools used in error averaging mechanism analysis experiment
Fig.20 Measurement site of straightness error of guide rail and workbench
Fig.21 Measurement results of straightness error of guide rail and workbench (1st experiment)
部件直线度误差
xy
左导轨6.6006.100
右导轨13.7008.100
导轨副10.1507.100
工作台2.8203.070
Table 4 Error transmission of linear feed system in the first experiment
比较项直线度误差均化系数
xy
相对误差/%6.95.4
仿真值0.2600.410
实验值0.2780.432
Table 5 Comparison of experimental and simulation results of straightness error averaging coefficient (1st experiment)
Fig.22 Measurement results of straightness error of guide rail and workbench (2nd experiment)
部件直线度误差
xy
左导轨19.4708.050
右导轨9.5308.220
导轨副14.5008.135
工作台4.8304.160
Table 6 Error transmission of linear feed system in the second experiment
比较项直线度误差均化系数
xy
相对误差/%28.124.6
仿真值0.2600.410
实验值0.3330.511
Table 7 Comparison of experimental and simulation results of straightness error averaging coefficient (2nd experiment)
[1]   LIU Y, CHEN M S, SUN Y W. Global toolpath modulation-based contour error pre-compensation for multi-axis CNC machining[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(7/8): 3171-3189.
[2]   WU S, WANG Y, LIU X, et al. Separating machining errors of S-shaped samples based on the comprehensive error field of five-axis machine tools[J]. Journal of Mechanical Science and Technology, 2022, 37(1): 305-316.
[3]   刘阔,韩伟,王永青,等.数控机床进给轴热误差补偿技术研究综述[J].机械工程学报,2021,57(3):156-173. doi:10.3901/jme.2021.03.156
LIU K, HAN W, WANG Y Q, et al. Review on thermal error compensation for feed axes of CNC machine tools[J]. Journal of Mechanical Engineering, 2021, 57(3): 156-173.
doi: 10.3901/jme.2021.03.156
[4]   孙光明,王奕苗,万仟,等.考虑装配变形的精密机床床身优化设计[J].工程设计学报,2022,29(3):318-326. doi:10.3785/j.issn.1006-754X.2022.00.035
SUN G M, WANG Y M, WAN Q, et al. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
doi: 10.3785/j.issn.1006-754X.2022.00.035
[5]   周微,朱若岭,张昊.数控机床进给系统运动精度与能耗控制研究[J].机电工程,2021,38(11):1387-1394. doi:10.3969/j.issn.1001-4551.2021.11.003
ZHOU W, ZHU R L, ZHANG H. Motion precision and energy consumption control for feed system of CNC machine tools[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(11): 1387-1394.
doi: 10.3969/j.issn.1001-4551.2021.11.003
[6]   PARK C H, CHUNG J H, LEE H, et al. Finite element analysis on the motion accuracy of hydrostatic table (1st. Analysis and experimental verification on single-side table) [J]. Journal of the Korean Society of Precision Engineering, 2000, 17(12): 137-144.
[7]   PARK C H, LEE H, KIM T H, et al. Finite element analysis on the motion accuracy of hydrostatic table (2nd. Analysis and experimental verification on double-side table) [J]. Journal of the Korean Society of Precision Engineering, 2002, 19(1): 65-70.
[8]   SHAMOTO E, PARK C H, MORIWAKI T. Analysis and improvement of motion accuracy of hydrostatic feed table [J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 285-290.
[9]   PARK C H, OH Y J, LEE C H, et al. Theoretical verification on the motion error analysis method of hydrostatic bearing tables using a transfer function[J]. International Journal of Precision Engineering and Manufacturing, 2003, 4(2): 64-70.
[10]   EKINCI T O, MAYER J R R. Relationships between straightness and angular kinematic errors in machines[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12/13): 1997-2004.
[11]   EKINCI T O, MAYER J R R, CLOUTIER G M. Investigation of accuracy of aerostatic guideways[J]. International Journal of Machine Tools and Manufacture, 2009, 49(6): 478-487.
[12]   KHIM G, PARK C H, SHAMOTO E, et al. Prediction and compensation of motion accuracy in a linear motion bearing table[J]. Precision Engineering, 2011, 35(3): 393-399.
[13]   薛飞,赵万华.静压导轨误差均化效应影响因素研究[J]. 西安交通大学学报,2010,44(11):33-36. doi:10.7652/xjtuxb201011007
XUE F, ZHAO W H. Influencing factors on error averaging effect of hydrostatic guideway[J]. Journal of Xi’an Jiaotong University, 2010, 44(11): 33-36.
doi: 10.7652/xjtuxb201011007
[14]   XUE F, ZHAO W H, CHEN Y L, et al. Research on error averaging effect of hydrostatic guideways[J]. International Journal of Precision Engineering and Manufacturing, 2012, 36(1): 84-90.
[15]   QI E, FANG Z, SUN T, et al. A method for predicting hydrostatic guide error averaging effects based on three-dimensional profile error[J]. Tribology International, 2016, 95: 279-289.
[16]   ZHA J, CHEN Y, WANG Z. A tolerance design method for hydrostatic guideways motion accuracy based on error averaging effect[J]. Procedia Cirp, 2018, 75: 196-201.
[17]   刘锡尧,赵晓龙,刘波,等.高精度平面气浮导轨的误差均化效应研究[J].润滑与密封,2016,41(6):49-53. doi:10.3969/j.issn.0254-0150.2016.06.011
LIU X Y, ZHAO X L, LIU B, et al. Research on error averaging effect of high accuracy plane gas floating guide[J]. Lubrication Engineering, 2016, 41(6): 49-53.
doi: 10.3969/j.issn.0254-0150.2016.06.011
[18]   ZHAO X, DONG H, ZHANG J. Study on error averaging effects of aerostatic bearing considering rough surface profile[J]. IOP Conference Series: Materials Science and Engineering, 2018, 382(4): 042054.
[19]   HE G Y, SUN G M, ZHANG H S, et al. Hierarchical error model to estimate motion error of linear motion bearing table[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5/8): 1915-1927.
[20]   NI Y B, ZHOU H Y, SHAO C Y, et al. Research on the error averaging effect in a rolling guide pair[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 72.
[1] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chin J Eng Design, 2022, 29(3): 318-326.
[2] HE Gai-yun, ZHANG Xiao-lei, ZHANG Da-wei, SUN Guang-ming. Research on three-dimensional evaluation method for repeated positioning accuracy of machine tool linear axis[J]. Chin J Eng Design, 2019, 26(4): 371-378.