Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 212-225    DOI: 10.3785/j.issn.1006-754X.2023.00.012
Modeling, Simulation, Analysis and Decision     
Study on laminated crushing characteristics of W-ore with dual-roller crusher
Yangbo LI1,2,3(),Gaipin CAI3,4(),Liao RUAN3
1.State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing 100160, China
2.BGRIMM Machinery & Automation Technology Co. , Ltd. , Beijing 100160, China
3.School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
4.Jiangxi Province Engineering Research Center for Mechanical and Electrical of Mining and Metallurgy, Ganzhou 341000, China
Download: HTML     PDF(6231KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the complexity of rock crushing process and the limitations of traditional simulation models, which reflects the little information about the replacement particle groups and can not locate a particle in the replacement particle groups, resulting in the simulated particles can not be broken continuously and the simulation accuracy is low, an improved crushing model developed by the discrete element application program interface is proposed, which is the bonded particle model (BPM) with multiple replacements. This method realizes the multiple continuous replacements of particles during the crushing process, which is closer to the actual crushing process and can improve the simulation accuracy. Based on the three-dimensional model of dual-roller crusher and the W-ore particle groups after parameter calibration, the visual simulation analysis of laminated crushing of W-ore particle groups in crusher was carried out, and the laminated crushing characteristics of the dual-roller crusher were studied through indoor tests to verify the effectiveness of numerical simulation. The results showed that: the relationship between the force on W-ore particles and the crushing rate obtained through simulation indicated that the dual-roller crusher could achieve laminated crushing; the error of particle size distribution after crushing was 0.889?1.940 mm, and the particle size distribution after crushing met the normal distribution, which verified the simulation analysis was accurate and effective. The laminating crushing test results of W-ore with different particle size ratios showed that the influence of particle interaction on crushing efficiency was greater than that of particle low porosity. The research results provide a basis for improving the production efficiency of dual-roller crusher, and the proposed improved crushing model also provides a new method for the study of material crushing.



Key wordsimproved crushing model      bonded particle model      dual-roller crusher      visual simulation      lamination crushing test     
Received: 20 June 2022      Published: 06 May 2023
CLC:  TH 11  
Corresponding Authors: Gaipin CAI     E-mail: 2827648047@qq.com;cgp4821@163.com
Cite this article:

Yangbo LI,Gaipin CAI,Liao RUAN. Study on laminated crushing characteristics of W-ore with dual-roller crusher. Chin J Eng Design, 2023, 30(2): 212-225.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.012     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/212


对辊破碎机对钨矿石的层压破碎特性研究

针对岩石破碎过程的复杂性以及传统仿真模型的局限性——反映替换颗粒群信息少且无法定位替换颗粒群中某一颗粒,使得所模拟的颗粒无法被连续破碎,导致仿真精度较低等问题,提出了通过离散元应用编程接口开发的改进破碎模型——多次替换的颗粒黏结模型(bonded particle model, BPM)。该方法能实现颗粒在破碎过程中的多次连续替换,更加贴近实际破碎过程,可提升仿真精度。基于对辊破碎机的三维模型与参数标定后的钨矿石颗粒群,对破碎机内的钨矿石颗粒群进行层压破碎可视化仿真分析,并结合室内试验研究了对辊破碎机的层压破碎特性,以验证数值仿真的有效性。结果表明:通过仿真得到的钨矿石颗粒受力与破碎速率的关系说明对辊破碎机可实现层压破碎;钨矿石碎后粒径分布误差为0.889~1.940 mm,且碎后粒径分布满足正态分布,说明仿真分析准确且有效。不同粒径配比下的钨矿石层压破碎试验结果表明,颗粒间相互作用力对破碎效率的影响程度大于颗粒低孔隙率。研究结果为进一步提高对辊破碎机的生产效率提供了依据,且所提出的改进破碎模型为物料的破碎研究提供了一种新方法。


关键词: 改进破碎模型,  颗粒黏结模型,  对辊破碎机,  可视化仿真,  层压破碎试验 
材料泊松比剪切模量/GPa密度/(kg/m3)
0.312127 850
钨矿石0.35252 830
Table 1 Material intrinsic parameters of steel and W-ore
Fig.1 Comparison between simulation results and experimental results of stacking angle of W-ore particles
接触参数钨矿-钨矿钨矿-钢
弹性恢复系数0.450.45
静摩擦因数0.480.48
滚动摩擦因数0.300.35
Table 2 Contact parameters of W-ore
Fig.2 Extrusion test instrument
Fig.3 Crushing results of W ore by compression
Fig.4 Continuous crushing model of multi-shape W-ore particles
原始粒径碎后粒径
平均值标准差下限上限
0~<40.70.7000.14
4~<80.82.2500.38
8~<121.03.8750.512
12~162.04.7850.816
Table 3 Particle size distribution of W-ore after compression crushing
Fig.5 Schematic of discrete element Hertz-Mindlin contact model
Fig.6 Uniaxial compression test results of W-ore
Fig.7 Changes of force chain of W-ore during uniaxial compression simulation
组别KnA/(N/m3)KtA/(N/m3)σn, max/Paσt, max/PaR/mm
15.0×10101.0×10107.5×1072.5×1071.2
27.5×10112.5×10115.0×1081.0×1081.2
37.5×10102.5×10105.0×1081.0×1081.2
47.5×10115.5×10112.5×1081.0×1080.5
57.5×10125.5×10122.5×1091.0×1090.5
69.5×10127.5×10125.0×1092.5×1090.5
72.5×10139.5×10127.5×1095.0×1090.5
85.0×10132.5×10131.0×10107.5×1090.5
Table 4 Setting of bonding parameters for W-ore particles
Fig.8 Comparison of stress-strain curves of W-ore during uniaxial compression
组别误差/MPa
197.210
282.814
391.932
498.416
596.071
675.523
724.852
829.212
Table 5 Error between simulation and experimental values of stress of W-ore under different bonding parameters
Fig.9 Continuous replacement process of W-ore particles in the crushing chamber of dual-roller crusher
Fig.10 W-ore particle clusters and grid division of rollers in dual-roller crusher
粒径/mm质量/g
第1组第2组第3组
810016.6720
910016.6720
1010016.6720
11752530
12752530
13302560
14302560
15152530
16152530
173025150
183025150
Table 6 Setting of particle size and mass of W-ore particles in simulation analysis
Fig.11 Visual simulation of W-ore particles crushing process
Fig.12 Variation curves of maximum pressure on W-ore particles and rollers during crushing process
Fig.13 Crushing information of W-ore particles within a certain time
参数数值
q073.68
q12 752
q2193.4
q3-2 316
q4997.6
q5-114.9
Table 7 Fitting parameter values of net force on W-ore particles and time
参数数值
a03.415
a15.029×104
b01.245
b10.003 16
c1-5.028×104
Table 8 Fitting parameter values of W-ore particle quantity and time
Fig.14 W-ore crushing test platform and corresponding tools
Fig.15 Comparison of proportion and quality of particles with different sizes of W-ore after crushing
组别拟合参数
abc
123.425.4154.319
227.165.3954.143
326.885.1693.992
Table 9 Fitting parameters values of particle size distribution of W-ore after crushing
组别误差/%
方案1方案2
11.2571.940
21.1831.689
30.8891.369
Table 10 Error between simulation results and experimental results of mass fraction of W-ore after crushing
编号粒径/mm
8~<1010~<1212~<1414~<1616~18
15020101010
25010201010
32040201010
44020201010
52020202020
61010203030
71010202040
81010204020
Table 11 Feed particle size ratio of W-ore (mass fraction) %
Fig.16 W-ore raw materials for laminated crushing test and their crushed particles
Fig.17 Particles size distribution of W-ore after crushing under different feed particle size ratios
试验编号颗粒1颗粒2颗粒3孔隙率/%
粒径/mm质量/kg粒径/mm质量/kg粒径/mm质量/kg
14~61034.16
28~101048.54
30~0.1548~101029.85
40~0.1568~101019.36
54~658~10541.44
64~638~10645.92
76~<858~10537.30
88~<10510~12533.75
98~<10610~12332.02
102~<40.94~<67.26~81.833.30
Table 12 Feed particle size ratio of W-ore and corresponding porosity
[1]   SCHWINDIG G. Versuche und Betrachtungen zur Ueberwalzzerkleine rung eines Mahlbettes[J]. Aufbereitungstechnik, 1966, 8: 489-492.
SCHWINDIG G. Experiment and research on over-rolling of grinding machine[J]. Processing Technology, 1966, 8: 489-492.
[2]   李仕亮.阳离子捕收剂浮选分离白钨矿与含钙脉石矿物的试验研究[D].长沙:中南大学,2010:1-8.
LI S L. Research on the separation of scheelite from calcareous gangue minerals by flotation with cationic collectors[D]. Changsha: Central South University, 2010: 1-8.
[3]   徐长锋,周友行,肖加其,等.海泡石螺旋搅拌磨机最优工艺参数研究[J].工程设计学报,2022,29(1):51-58. doi:10.3785/j.issn.1006-754X.2022.00.005
XU C F, ZHOU Y H, XIAO J Q, et al. Research on optimal process parameters of sepiolite spiral stirred mill[J]. Chinese Journal of Engineering Design, 2022, 29(1): 51-58.
doi: 10.3785/j.issn.1006-754X.2022.00.005
[4]   SCHOENERT K. A first survey of grinding with high-compression roller mills[J]. International Journal of Mineral Processing, 1988, 22(1/4): 401-412.
[5]   RASHIDI S, RAJAMANI R K, FUERSTENAU D W. A review of the modeling of high pressure grinding rolls[J]. Kona Powder and Particle Journal, 2017, 34: 125-140.
[6]   FUERSTENAU D W, ABOUZEID A. Role of feed moisture in high-pressure roll mill comminution[J]. International Journal of Mineral Processing, 2007, 82(4): 203-210.
[7]   TAVARES L M, CHAGAS A. A stochastic particle replacement strategy for simulating breakage in DEM[J]. Powder Technology, 2020, 377(9): 222-232.
[8]   YEOM S B, HA E, KIM M, et al. Application of the discrete element method for manufacturing process simulation in the pharmaceutical industry[J]. Pharmaceutics, 2019, 11(8): 414.
[9]   GOBBIN F, DE FELICE G, LEMOS J V. Numerical procedures for the analysis of collapse mechanisms of masonry structures using discrete element modelling[J]. Engineering Structures, 2021, 246(11): 113047.
[10]   陈兵,燕纪威,尹忠俊,等.基于DEM的高频振网筛多参数优化[J].工程科学学报,2021,43(6):852-861.
CHEN B, YAN J W, YIN Z J, et al. Multi parameter optimization of high-frequency vibrating screen based on DEM[J]. Chinese Journal of Engineering, 2021, 43(6): 852-861.
[11]   POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
[12]   徐琨,周伟,马刚,等.基于离散元法的颗粒破碎模拟研究进展[J].岩土工程学报,2018,40(5):880-889. doi:10.11779/CJGE201805013
XU K, ZHOU W, MA G, et al. Research progress on particle breakage simulation based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889.
doi: 10.11779/CJGE201805013
[13]   方继松,王珠,熊迅,等.石英玻璃球撞击刚性壁的破碎过程[J].高压物理学报,2020,34(1):66-73. doi:10.11858/gywlxb.20190764
FANG J S, WANG Z, XIONG X, et al. Fragmentation process of quartz glass spheres impacting rigid wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 66-73.
doi: 10.11858/gywlxb.20190764
[14]   江汇.颗粒料压缩破碎仿真-应用与高坝蓄水河谷-库坝变形研究[D].北京:清华大学,2019:40,85-86.
JIANG H. Particle compression breakage simulation-application and dam-valley deformation due to reservoir impounding[D]. Beijing: Tsinghua University, 2019: 40, 85-86.
[15]   池昌江.准脆性颗粒材料的受压渐进破碎机制研究[D].北京:清华大学,2015:70-82.
CHI C J. Compression induced progressive breakage mechanism of particle beds made of quasi-brittle material[D]. Beijing: Tsinghua University, 2015: 70-82.
[16]   邵一哲,谭超,董峰.油水两相流超声测试机理仿真建模[J].中南大学学报(自然科学版),2018,49(4):987-994.
SHAO Y Z, TAN C, DONG F. Modeling of ultrasonic measurement mechanism in oil-water two-phase flow[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 987-994.
[17]   孙德明.高硬度磁铁矿选矿工艺设备优化及自动化控制研究[D].西安:西安建筑科技大 学,2017:33.
SUN D M. Optimization of mineral processing technology and equipment of magnetite with high hardness and automatic control[D]. Xi’an: Xi’an University of Architecture and Technology, 2017: 33.
[18]   夏晓鸥,沈政昌,史帅星,等.选矿装备[M].北京:冶金工业出版社,2019:54.
XIA X O, SHEN Z C, SHI S X, et al. Beneficiation equipment[M]. Beijing: Metallurgical Industry Press, 2019: 54.
[19]   林龙飞.基于多尺度颗粒模型的预磨机破碎能耗分析[D].赣州:江西理工大学,2016:3.
LIN L F. Energy consumption analysis of vertical mill based on multi-scale bonded particle model[D]. Ganzhou: Jiangxi University of Science & Technology, 2016: 3.
[20]   杨松荣,蒋仲亚,刘文拯,等.碎磨工艺及应用[M].北京:冶金工业出版社,2013:77.
YANG S R, JIANG Z Y, LIU W Z, et al. Grinding process and application[M]. Beijing: Metallurgical Industry Press, 2013: 77.
[21]   谢仁海,渠天祥,光谟.构造地质学[M].徐州:中国矿业大学出版社,2007:20-30.
XIE R H, QU T X, GUANG M. Structural geology[M]. Xuzhou: China University of Mining and Technology Press, 2007: 20-30.
[22]   BARRIOS G K P, DE CARVALHO R M, KWADE A, et al. Contact parameter estimation for DEM simulation of iron ore pellet handling[J]. Powder Technology, 2013, 248: 84-93.
[23]   HERTZ H. Ueber die Berüehrung fester elastischer Köerper[J]. Journal für die Reine und Angewandte Mathematik, 1882, 5(91): 156-171.
HERTZ H. On touching solid elastic bodies[J]. Crell’s Journal, 1882, 5(91): 156-171.
[24]   MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16: 259-268.
[25]   JOHANNES Q. Development of a virtual rock crushing environment based on the DEM with industrial scale experiments for validation[D]. Goteborg: Chalmers University of Technology, 2012: 38-40.
[26]   DAI Y, CHEN L S, ZHU X, et al. Modelling and simulation of a mining machine excavating seabed massive sulfide deposits[J]. International Journal of Simulation Modelling, 2016, 15(2): 377-387.
[27]   MOES N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833.
[28]   岳双杰,范秀敏,马彦军,等.圆锥破碎机虚拟样机参数化建模与仿真分析[J].中国机械工程,2011,22(22):2712-2716.
YUE S J, FAN X M, MA Y J, et al. Virtual prototype parameterized modeling and simulation analysis of cone crusher[J]. China Mechanical Engineering, 2011, 22(22): 2712-2716.
[29]   陈松涛.新型盘辊式破碎机的研制及破碎物料粒度分析[D].郑州:郑州大学,2012:14.
CHEN S T. Development of new type and study on its particle size distribution[D]. Zhengzhou: Zhengzhou University, 2012: 14.
[30]   张宜,周伟,马刚,等.细颗粒截断粒径对堆石体力学特性影响的数值模拟[J].武汉大学学报(工学版),2017,50(3):332-339.
ZHANG Y, ZHOU W, MA G, et al. Effect of minimum particle size on mechanical properties of rockfill materials by numerical simulation[J]. Engineering Journal of Wuhan University, 2017, 50(3): 332-339.
[1] CAO Peng-yong, WANG Jian-wen. Research on structure and control system of intelligent vehicle based on STM8S105[J]. Chin J Eng Design, 2020, 27(4): 516-523.
[2] SUN Wei, HAN Qing-Kai, YU Tao, WEN Bang-Chun. Research on visual simulation of automobile gearbox assembling line[J]. Chin J Eng Design, 2006, 13(4): 245-248.