Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 182-188    DOI: 10.3785/j.issn.1006-754X.2023.00.018
Optimization Design     
Optimization design and implementation of atomization assisted CVD cavity
Junliang FAN(),Li XIAO(),Yueting LUO,Gang CHEN,Xiaolin QU,Yi TANG,Hengxiang GONG
College of Science, Chongqing University of Technology, Chongqing 400054, China
Download: HTML     PDF(4602KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to realize the customization, reusability and economy of atomization assisted CVD (chemical vapor deposition) cavity, and meet the actual requirements of high-quality single crystal Ga2O3 thin film preparation, a new atomization assisted CVD cavity was designed and developed. The cavity was mainly composed of reaction chamber module, cooling module and buffer chamber module. Ga2O3 thin films were prepared by using a new cavity and a conventional cavity, and then the X-ray diffraction (XRD) patterns analysis and its surface morphology observation by atomic force microscope (AFM) were carried out. The experimental results showed that the new cavity could produce better performance α-Ga2O3 and β-Ga2O3 thin film; the half-peak widths of (006) crystal plane of the α-Ga2O3 thin films prepared by the new cavity and the conventional cavity were 0.172° and 0.272°, respectively, and the surface roughness was 25.6 nm and 26.8 nm, respectively. It could be seen that the α-Ga2O3 thin film made with the new cavity had better crystallinity, surface smoothness and density. Through the design of the new cavity, a stable environment conducive to the growth of single crystal Ga2O3 thin film was constructed, which provided a reliable path for the optimization of the preparation process of Ga2O3 thin film. The research results provide a reference for the preparation of high-quality metal oxide semiconductor films.



Key wordsatomization assisted CVD (chemical vapor deposition)      new cavity      single crystal Ga2O3 thin film      process optimization     
Received: 16 May 2022      Published: 06 May 2023
CLC:  TH 69  
Corresponding Authors: Li XIAO     E-mail: fanjunliang@stu.cqut.edu.cn;xiaoli@cqut.edu.cn
Cite this article:

Junliang FAN,Li XIAO,Yueting LUO,Gang CHEN,Xiaolin QU,Yi TANG,Hengxiang GONG. Optimization design and implementation of atomization assisted CVD cavity. Chin J Eng Design, 2023, 30(2): 182-188.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.018     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/182


雾化辅助CVD腔体的优化设计与实现

为了实现雾化辅助CVD(chemical vapor deposition,化学气相沉积)腔体的可定制性、可复用性及经济性,并满足高质量单晶氧化镓(Ga2O3)薄膜制备的实际需求,设计开发了一种新型雾化辅助CVD腔体。该腔体主要由反应腔室模块、冷却模块和缓冲腔室模块组成。采用新型腔体和常规腔体进行了单晶Ga2O3薄膜制备实验,对Ga2O3薄膜进行了X射线衍射(X-ray diffraction,XRD)图谱分析,并采用原子力显微镜(atomic force microscope,AFM)观察其表面形貌。实验结果表明:采用新型腔体可制备出性能更优的α-Ga2O3、β-Ga2O3薄膜;采用新型腔体和常规腔体制备的α-Ga2O3薄膜的(006)晶面的半峰宽分别为0.172°、0.272°,表面粗糙度分别为25.6 nm和26.8 nm,可见采用新型腔体制备的α-Ga2O3具有更优的结晶度、表面平整性和致密度。通过新型腔体的设计,构建了更有利于单晶Ga2O3薄膜生长的稳定环境,为Ga2O3薄膜制备工艺的优化提供了可靠路径。研究结果为制备高品质金属氧化物半导体薄膜提供了参考。


关键词: 雾化辅助化学气相沉积,  新型腔体,  单晶Ga2O3薄膜,  工艺优化 
Fig.1 Schematic diagram of new atomization auxiliary CVD cavity
Fig.2 Structure of new atomization assisted CVD cavity
Fig.3 Fog cone morphology of precursor aerosol
Fig.4 Structure of temperature-controlled heating table
Fig.5 Physical object of atomization assisted CVD cavity
Fig.6 Preparation process of metallic oxide thin film
Fig.7 XRD patterns of Ga2O3 thin film
Fig.8 AFM surface morphology of α-Ga2O3 thin film
[1]   胡昌义,李靖华.化学气相沉积技术与材料制备[J].稀有金属,2001,25(5):5.
HU C Y, LI J H. Chemical vapor deposition and preparation of materials[J]. Chinese Journal of Rare Metals, 2001, 25(5): 5.
[2]   任文才,高力波,马来鹏,等.石墨烯的化学气相沉积法制备[J].新型炭材料,2011,26(1):71-80.
REN W C, GAO L B, MA L P, et al. Preparation of graphene by chemical vapor deposition[J]. New Carbon Materials, 2011, 26(1): 71-80.
[3]   蒋运才,曹昌蝶,刘岚君,等.化学气相沉积法制备二维材料研究进展[J].化工新型材料,2021,49(11):59-62.
JIANG Y C, CAO C D, LIU L J, et al. Progress in the preparation of two-dimensional materials by chemical vapor deposition[J]. New Chemical Materials, 2021, 49(11): 59-62.
[4]   庞世红,王承遇,马眷荣,等.常压化学气相沉积法制备二氧化钛薄膜的沉积工艺及薄膜均匀性[J].硅酸盐学报,2010,38(1):64-67.
PANG S H, WANG C Y, MA J R, et al. Deposition process and uniformity of titanium dioxide film prepared by atmosphere chemical vapor deposition[J]. Journal of the Chinese Ceramic Society, 2010, 38(1): 64-67.
[5]   王汐璆,庄文昌,张凯惠,等.化学气相沉积法制备氧化镓纳米线[J].人工晶体学报,2019,48(12):2174-2178. doi:10.3969/j.issn.1000-985X.2019.12.002
WANG X Q, ZHUANG W C, ZHANG K H, et al. Preparation of gallium oxide nanowires by chemical vapor deposition[J]. Journal of Artificial Crystals, 2019, 48(12): 2174-2178.
doi: 10.3969/j.issn.1000-985X.2019.12.002
[6]   PARK S Y, HA M T, KIM K H, et al. Enhanced thickness uniformity of large-scale α-Ga2O3 epilayers grown by vertical hot-wall mist chemical vapor deposition[J]. Ceramics International, 2022, 48(4): 5075-5082.
[7]   HYEON K S, MINO Y, LEE H Y, et al. Structural characteristics of α-Ga2O3 films grown on sapphire by halide vapor phase epitaxy[J]. Materials Science in Semiconductor Processing, 2021, 123: 1-4.
[8]   JINNO R, YOSHIMURA N, KANEKO K, et al. Enhancement of epitaxial lateral overgrowth in the mist chemical vapor deposition of α-Ga2O3 by using a-plane sapphire substrate[J]. Japanese Journal of Applied Physics, 2019, 58(12): 9-12.
[9]   XU Y, ZHANG C F, CHENG Y L, et al. Influence of carrier gases on the quality of epitaxial corundum-structured α-Ga2O3 films grown by mist chemical vapor deposition method[J]. Materials, 2019, 12(22): 3670-3671.
[10]   SON H K, CHOI Y J, HA J S, et al. Crystal quality improvement of α-Ga2O3 growth on stripe patterned template via epitaxial lateral overgrowth[J]. Crystal Growth and Design, 2019, 19(9): 5105-5110.
[11]   CHENG Y L, XU Y, LI Z, et al. Heteroepitaxial growth of α-Ga2O3 thin films on a-, c- and r-plane sapphire substrates by low-cost mist-CVD method[J]. Journal of Alloys and Compounds, 2020, 831: 1-3.
[12]   LEILA G, JACQUELINE C, GIANG T D, et al. Optical characterization of gallium oxide α and β Polymorph thin-films grown on c-plane sapphire[J]. Journal of Electronic Materials, 2021, 50(6): 2990-2998.
[13]   龚恒翔,冯倩,郝跃,等.雾化辅助CVD薄膜沉积方法:CN109440083B[P]. 2020-09-25.
GONG H X, FENG Q, HAO Y, et al. Atomization-assisted CVD thin film deposition method: CN109440083B[P]. 2020-09-25.
[14]   王超,孙文旭,马晓静,等.基于模糊控制的HVPE生长设备温度控制系统[J].工程设计学报,2020,27(6):765-770. doi:10.3785/j.issn.1006-754X.2020.00.083
WANG C, SUN W X, MA X J, et al. Temperature control system of HVPE growth equipment based on fuzzy control[J]. Chinese Journal of Engineering Design, 2020, 27(6):765-770.
doi: 10.3785/j.issn.1006-754X.2020.00.083
[15]   孙华.一种反应室及CVD沉积石墨烯的规模化制备设备:CN215249591U[P].2021-12-21.
SUN H. A reaction chamber and scale-up preparation equipment for CVD deposition of graphene: CN215249591U[P]. 2021-12-21.
[16]   于伟华,朱建中,鞠德胜,等.一种用于CVD反应器的喷嘴装置及CVD反应器:CN215757598U[P].2022-02-08.
YU W H, ZHU J Z, JU D S, et al. A nozzle device for CVD reactor and CVD reactor: CN215757598U[P]. 2022-02-08.
[17]   宋德鹏,陈占领.CVD真空设备及立卧切换实现方法:CN114086153A[P].2022-02-25.
SONG D P, CHEN Z L. CVD vacuum equipment and vertical and horizontal switching implementation method: CN114086153A[P]. 2022-02-25.
[18]   黄大凯.一种实施气相沉积法工艺的高速清洁的CVD腔室结构:CN113930747A[P].2022-01-14.
HUANG D K. A high-speed clean CVD chamber structure for implementing vapor deposition method process: CN113930747A[P]. 2022-01-14.
[19]   陈欣.紧耦合气雾化流场结构和雾化机理研究[D].长沙:中南大学,2007:1-97.
CHEN X. Study on the structure and atomization mechanism of tightly coupled aerosolized flow field[D]. Changsha: Central South University, 2007: 1-97.
[20]   刘宏明,林琳.一种改善气体分布的CVD金刚石生长设备:CN216377494U[P].2022-04-26.
LIU H M, LIN L. A CVD diamond growth device with improved gas distribution: CN216377494U [P]. 2022-04-26.
[21]   黎波,龚恒翔,孟祥杰,等.超声喷雾热分解法制备 ZnO 薄膜及衬底温度对其性能的影响[J]. 人工晶体学报,2014, 43(3):523-527.
LI B, GONG H X, MENG X J, et al. Influence of substrate temperature on the performance of ZnO thin films prepared by ultrosonic spray pyrolysis method[J]. Journal of Synthetic Crystals, 2014, 43(3): 523-527.
[22]   马同川.亚稳相氧化镓Mist-CVD异质外延研究[D].南京:南京大学,2020:10-11. doi:10.26478/ja2019.7.11.1
MA T C. Sub-stable phase Ga2O3 Mist-CVD heterogeneous epitaxy study[D]. Nanjing: Nanjing University, 2020:10-11.
doi: 10.26478/ja2019.7.11.1
[23]   张志海.喷雾热解法制备氟掺杂二氧化锡导电薄膜及其性能研究[D].合肥:合肥工业大学, 2010:1-75.
ZHANG Z H. Preparation and properties of fluorine doped tin dioxide conductive films by spray pyrolysis[D]. Hefei: Hefei University of Technology, 2010: 1-75.
No related articles found!