Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (4): 438-448    DOI: 10.3785/j.issn.1006-754X.2023.00.051
Robotic and Mechanism Design     
Structure design and motion realization of multi-joint snakelike robot
Xuelin DU(),Wenhui YI,Jiahua ZOU,Can ZHOU,Li MAO,Lishi DENG,Ying LIU
School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China
Download: HTML     PDF(5686KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the key issues in the overall development of snakelike robots, including material selection, structure design and motion realization, a new multi-joint snakelike robot was developed. This snakelike robot was composed of 11 two-degree-of-freedom orthogonal joints, which could achieve three-dimensional high biomimetic motion while ensuring flexibility. The basic gaits of snakelike robot such as meandering, wriggling and tumbling were designed by using the serpentine curve, and an improved obstacle surmounting gait was further proposed. At the same time, the gaits of the snakelike robot were simulated in the V-REP software, and the motion trajectories and efficiency of different gaits were compared. Finally, through the gait experiment of the snakelike robot prototype, the influence of each control parameter in the gait model on the motion waveform and speed of the snakelike robot was analyzed, and the reliability of the body structure and control system of the snakelike robot was verified. The research results have important theoretical significance and practical guiding value for realizing the gait planning and motion control of snakelike robots.



Key wordssnakelike robot      serpentine curve      basic gait      obstacle surmounting gait      gait experiment     
Received: 29 December 2022      Published: 04 September 2023
CLC:  TH 122  
Cite this article:

Xuelin DU,Wenhui YI,Jiahua ZOU,Can ZHOU,Li MAO,Lishi DENG,Ying LIU. Structure design and motion realization of multi-joint snakelike robot. Chin J Eng Design, 2023, 30(4): 438-448.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.051     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I4/438


多关节蛇形机器人的结构设计和运动实现

针对蛇形机器人整体研制的关键问题,包括材料选取、结构设计和运动实现等,研制了一种新型的多关节蛇形机器人。该蛇形机器人由11个二自由度正交关节构成,可在保证灵活性的同时实现三维高仿生运动。采用蛇形曲线设计了蛇形机器人的蜿蜒、蠕动和翻滚等基本步态,并进一步提出了改进的越障步态。同时,在V-REP软件中对蛇形机器人的步态进行运动仿真,比较了不同步态的运动轨迹和运动效率。最后,通过蛇形机器人样机步态实验,对步态模型中各个控制参数对蛇形机器人运动波形和运动速度的影响进行了分析,验证了蛇形机器人本体结构与控制系统的可靠性。研究结果对实现蛇形机器人的步态规划与运动控制具有重要的理论意义与实际指导价值。


关键词: 蛇形机器人,  蛇形曲线,  基本步态,  越障步态,  步态实验 
Fig.1 Structure diagram of multi-joint snakelike robot
Fig.2 Structure of orthogonal joint of snakelike robot
Fig.3 Head and tail structure of snakelike robot
Fig.4 Joint shell structure of snakelike robot
Fig.5 Head and tail shell structure of snakelike robot
Fig.6 Snakelike robot joints made of different materials
Fig.7 Flow of motion control for snakelike robot
Fig.8 Lobot Servo Control software interface
Fig.9 Remote control process of snakelike robot
Fig.10 Snakelike robot prototype
参数量值
关节数量11个
关节外壳直径95 mm
总长度1 122 mm
总质量2 055 g
Table 1 Related technical parameters of snakelike robot prototype
Fig.11 Fitting diagram of simplified Serpeniod curve
Fig.12 Variation curves of yaw joint angle of snakelike robot during meandering locomotion
Fig.13 Variation curves of yaw joint angle of snakelike robot with different horizontal angles
Fig.14 Variation curves of pitch joint angle of snakelike robot during wriggling locomotion
Fig.15 Variation curves of joint angle of snakelike robot during tumbling locomotion
Fig.16 Variation curves of pitch joint angle of snakelike robot during obstacle surmounting locomotion
Fig.17 Motion trajectories of centroid of snakelike robot under different gaits
Fig.18 Meandering locomotion trajectories of snakelike robot under different amplitudes
Fig.19 Meandering locomotion trajectories of snakelike robot under different periods
Fig.20 Simulation result of obstacle surmounting process of snakelike robot

时间

t/s

关节0关节2关节4关节6关节8关节10
1-30-15153015-15
23015-15-30-1515
Table 2 Setting of yaw joint angle of snakelike robot in meandering locomotion
Fig.21 Experimental site of snakelike robot in meandering locomotion
时间t/s关节1关节3关节5关节7关节9
10-15-30150
201530-150
Table 3 Setting of pitch joint angle of snakelike robot in wriggling locomotion
Fig.22 Experimental site of snakelike robot in wriggling locomotion
时间t/s关节0关节1关节2关节3关节4关节5
1300-300300
20300-30030
3-300300-300
40-300300-30
5300-300300
时间t/s关节6关节7关节8关节9关节10
1-300300-30
20-300300
3300-30030
40300-300
5-30030030
Table 4 Setting of joint angles for snakelike robot in tumbling locomotion
Fig.23 Experimental site of snakelike robot in tumbling locomotion
越障种类时间t/s关节1关节3关节5关节7关节9
头部越障1-36-2736-36-36
2-36027-22.5-36
3-360000
身体越障122.5-2736-36-36
2-9-2727270
322.50000
尾部越障10368-2727
2-31.5731.522.527
3000027
Table 5 Setting of pitch joint angle of snakelike robot in obstacle surmounting locomotion
Fig.24 Experiment site of snakelike robot in obstacle surmounting locomotion
[1]   苏中,张双彪,李兴城.蛇形机器人的研究与发展综述[J].中国机械工程,2015,26(3):414-425. doi:10.3969/j.issn.1004-132X.2015.03.022
SU Z, ZHANG S B, LI X C. Present situation and development tendency of snake-like robots[J]. China Mechanical Engineering, 2015, 26(3): 414-425.
doi: 10.3969/j.issn.1004-132X.2015.03.022
[2]   LILJEBÄCK P, PETTERSEN K Y, STAVDAHL Ø, et al. A review on modelling, implementation, and control of snake robots[J]. Robotics and Autonomous Systems, 2012, 60(1): 29-40.
[3]   LIU J D, TONG Y C, LIU J G. Review of snake robots in constrained environments[J]. Robotics and Autonomous Systems, 2021, 141: 103785.
[4]   张军豪,陈英龙,杨双喜,等.蛇形机器人:仿生机理,结构驱动和建模控制[J].机械工程学报,2022,58(7):75-92. doi:10.3901/jme.2022.07.075
ZHANG J H, CHEN Y L, YANG S X, et al. Snake robotics: bionic mechanism, structure, actuation, modeling and control[J]. Journal of Mechanical Engineering, 2022, 58(7): 75-92.
doi: 10.3901/jme.2022.07.075
[5]   张东.复杂环境下仿蛇机器人三维运动建模与优化控制[D].北京:北京化工大学,2020:1-16.
ZHANG D. Modeling and optimize control of 3-D gaits for snakelike robots in complexity environments[D]. Beijing: Beijing University of Chemical Technology, 2020: 1-16.
[6]   刘旭鹏,郜志英,臧勇,等.蛇形机器人蜿蜒运动的摩擦机理及推进条件[J].机械工程学报,2021,57(21):189-201. doi:10.3901/jme.2021.21.189
LIU X P, GAO Z Y, ZANG Y, et al. Tribological mechanism and propulsion conditions for creeping locomotion of the snake-like robot[J]. Journal of Mechanical Engineering, 2021, 57(21): 189-201.
doi: 10.3901/jme.2021.21.189
[7]   周云虎.轻型蛇形机器人系统设计及分段运动规划策略研究[D].哈尔滨:哈尔滨工业大学,2021:10-12.
ZHOU Y H. Lightweight snake robot system design and segmentd motion planning strategy research[D]. Harbin: Harbin Institute of Technology, 2021: 10-12.
[8]   LILJEBÄCK P, STAVDAHL Ø, BEITNES A. SnakeFighter: development of a water hydraulic fire fighting snake robot[C]//2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, Dec. 5-8, 2006.
[9]   OHNO H, HIROSE S. Pneumatically-driven active cord mechanism “Slim Slime Robot”[J]. Journal of Robotics and Mechatronics, 2014, 26(1): 105-106.
[10]   ENNER F, ROLLINSON D, CHOSET H. Simplified motion modeling for snake robots[C]//2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, May 14-18, 2012.
[11]   张丹凤,李斌,王立岩.基于连续体模型的蛇形机器人质心速度跟踪控制方法[J].机器人,2017,39(6):829-837. doi:10.13973/j.cnki.robot.2017.0829
ZHANG D F, LI B, WANG L Y. Tracking control method of the centre-of-mass velocity for a snake-like robot based on the continuum model[J]. Robot, 2017, 39(6): 829-837.
doi: 10.13973/j.cnki.robot.2017.0829
[12]   郁树梅,马书根,李斌,等.蛇形机器人步态产生及步态分析[J].机器人,2011,33(3):371-378. doi:10.3724/sp.j.1218.2011.00371
YU S M, MA S G, LI B, et al. Gait generation and analysis for snake-like robots[J]. Robot, 2011, 33(3): 371-378.
doi: 10.3724/sp.j.1218.2011.00371
[13]   YAN B Z, SHI D X, WEI J, et al. HiBot: a generic ROS-based robot-remote-control framework[C]//2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan, Jun. 16-18, 2017.
[14]   HIROSE S. Biologically inspired robots: snake-like locomotors and manipulators[M]. London: Oxford University Press, 1993: 1-49.
[15]   MA S. Analysis of snake movement forms for realization of snake-like robots[C]//1999 IEEE International Conference on Robotics and Automation, Detroit, MI, May 10-15, 1999.
[16]   MARVI H, HU D L. Friction enhancement in concertina locomotion of snakes[J]. Journal of the Royal Society Interface, 2012, 9(76): 3067-3080.
[17]   MARVI H, BRIDGES J, HU D L. Snakes mimic earthworms: propulsion using rectilinear travelling waves[J]. Journal of the Royal Society Interface, 2013, 10(84): 20130188.
[18]   MARVI H, GONG C, GRAVISH N, et al. Sidewinding with minimal slip: snake and robot ascent of sandy slopes[J]. Science, 2014, 346(6206): 224-229.
[19]   YE C L, MA S G, LI B, et al. Turning and side motion of snake-like robot[C]//IEEE International Conference on Robotics and Automation, New Orleans, LA, Apr. 26-May 1, 2004.
[20]   HATTON R L, CHOSET H. Generating gaits for snake robots: annealed chain fitting and key frame wave extraction[J]. Autonomous Robots, 2009, 28(3): 271-281.
[21]   CAO Z C, ZHANG D, ZHOU M C. Modeling and control of hybrid 3-D gaits of snake-like robots[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4603-4612.
No related articles found!