In response to the problem of low efficiency in replacing the wire rope of electric shovel, a manipulator frame used to replace wire rope was designed. The dynamic model of the manipulator frame was established taking the gravity of the wire rope extracted by the end effector of the manipulator frame as the main acting load. Using finite element analysis method, multi-body dynamic analysis method and the "spring-rotor" model, the rigid flexible coupling dynamic analysis was conducted on the arm and main hinge joints. The influence of different joint stiffness on the dynamic characteristics of the end effector was studied, and the optimal stiffness of each joint was selected based on the simulation results to further analyze the influence on joint angular displacement and end effector displacement with/without wire rope action. The results showed that as the stiffness coefficient of the joint increased, the deviation between the joint angular displacement and that in the state of full rigid body without wire rope action gradually decreased, and the end effector displacement gradually approached that in the state of full rigid body without wire rope action; the stiffness of the hinge joint between the telescopic forearm and the curved arm had the greatest influence on the end effector displacement; after selecting the optimal stiffness coefficient for each joint, the angular displacement deviation of the hinge joint between the telescopic mechanism and the turntable was the smallest with wire rope action. The vibration amplitude of the manipulator frame without wire rope action was higher than that with wire rope action. The research results provide a reference for the study of the stability and motion accuracy control of the manipulator frame.
Hongyue CHEN,Minghang CAI,Xinwei YANG,Zhonghuan DAI. Structure and dynamics analysis of special manipulator frame for replacing wire rope of electric shovel. Chin J Eng Design, 2023, 30(5): 590-600.
Fig.2 Section of telescopic boom of manipulator frame
Fig.3 Distribution of sliders
Fig.4 Structure of replacement mechanism
部件1
部件2
约束类型
约束自由度/个
转台
伸缩臂1
点线副
2
变幅液压缸筒
回转台
旋转副
5
变幅液压缸杆
伸缩大臂1
旋转副
5
伸缩大臂1
伸缩大臂2
移动副
5
伸缩大臂2
伸缩大臂3
移动副
5
伸缩大臂3
伸缩大臂4
移动副
5
伸缩大臂4
伸缩大臂5
移动副
5
一级变幅液压缸筒
连接臂
点线副
2
弧形臂
连接板
固定副
6
一级变幅液压缸杆
连接板
旋转副
5
二级变幅液压缸筒
弧形臂
点线副
2
二级变幅液压缸杆
伸缩小臂1
旋转副
5
弧形臂
伸缩小臂1
旋转副
5
伸缩小臂2
伸缩小臂1
移动副
5
伸缩小臂3
伸缩小臂2
移动副
5
伸缩小臂4
伸缩小臂3
移动副
5
Table 1Description of constraints for kinematic pair of manipulator frame
Fig.5 End effector displacement in the state of complete rigid body without wire rope
Fig.6 Joint angular displacement in the state of full rigid body without wire rope
Fig.7 Force model of small ball
参数
量值
接触刚度
1×108 N/m
摩擦因数
0.6
摩擦速度
0.1 m/s
Table 2Contact parameters between wire rope and wheel
参数
量值
直径
90 mm
密度
7 800 kg/m3
弹性模量
1.96×1011 Pa
阻尼
0.3 kg/s
Table 3Parameters of wire rope
Fig.8 Wire rope buckling wheel
Fig.9 Wire rope conveying
Fig.10 Tension change of wire rope
Fig.11 Rigid area connection of telescopic forearm 1
Fig.12 End effector displacement after flexing the telescopic forearm
Fig.13 Displacement deviation of end effector
Fig.14 Schematic diagram of manipulator frame coordinate system
Fig.15 Angular displacement of flexible rod joints
部件1
部件2
约束类型
转台
圆盘A
旋转副
圆盘A
伸缩机构
旋转副
连接臂
圆盘B
旋转副
圆盘B
连接板
旋转副
弧形臂
圆盘C
旋转副
圆盘C
伸缩小臂
旋转副
Table 4Joint constraints
Fig.16 Flow of joint flexible treatment
Fig.17 Influence of joint A stiffness on end effector displacement
Fig.18 Influence of joint B stiffness on end effector displacement
Fig.19 Influence of joint C stiffness on end effector displacement
Fig.20 Influence on joint angular displacement with/without wire rope action
Fig.21 Influence on end effector displacement deviation with/without wire rope action
[1]
张建国.对电铲钢丝绳寿命计算及影响因素的探讨[J].中国战略新兴产业, 2018(24):196. ZHANG J G. Discussion on life calculation and influencing factors of electric shovel wire rope[J]. China Strategic Emerging Industry, 2018(24): 196.
[2]
聂忠叶.对电铲钢丝绳寿命计算及影响因素的探讨[J].内蒙古煤炭经济, 2019(15):83-85. doi:10.3969/j.issn.1008-0155.2019.15.062 NIE Z Y. Discussion on life calculation and influencing factors of wire rope for electric shovel[J]. Inner Mongolia Coal Economy, 2019(15): 83-85.
doi: 10.3969/j.issn.1008-0155.2019.15.062
[3]
周雪健.矿用WK-10B型电铲装矿作业实时称重系统开发研究[D].包头:内蒙古科技大学, 2022:29-36. ZHOU X J. Development and research of real-time weighing system for mine WK-10B electric shovel loading operation[D]. Baotou: Inner Mongolia University of Science and Technology, 2022: 29-36.
[4]
赵斌.基于三自由度挖掘机机械臂系统的刚柔耦合动力学分析[D].兰州:兰州理工大学,2016:31-44. ZHAO B. Dynamic analysis of rigid-flexible coup-ling based on three-degree-of-freedom excavator manipulator system[D]. Lanzhou: Lanzhou University of Technology, 2016: 31-44.
[5]
王相兵,童水光.基于刚柔耦合的液压挖掘机机械臂非线性动力学研究[J].振动与冲击,2014,33(1):63-70. doi:10.3969/j.issn.1000-3835.2014.01.011 WANG X B, TONG S G. Nonlinear dynamical behavior analysis on rigid-flexible coupling mechanical arm of hydraulic excavator[J]. Journal of Vibration and Shock, 2014, 33(1): 63-70.
doi: 10.3969/j.issn.1000-3835.2014.01.011
[6]
殷玉枫,武奎扬,张锦.柔性臂动力学建模与规划角加速度抑振研究[J].机械设计与制造,2022(6):249-253. doi:10.3969/j.issn.1001-3997.2022.06.054 YIN Y F, WU K Y, ZHANG J. Flexible arm dynamics modeling and research on angular acceleration vibration suppression[J]. Machinery Design & Manufacture, 2022(6): 249-253.
doi: 10.3969/j.issn.1001-3997.2022.06.054
[7]
颜世军,彭剑,刘泽,等.大型柔性起重臂系统回转吊装刚柔耦合动力学模型[J].振动与冲击,2018,37(5):175-179,201. YAN S J, PENG J, LIU Z, et al. Rigid-flexible coupled dynamic model of a huge-type truckcrane's boom system during its slewing hoisting[J]. Journal of Vibration and Shock, 2018, 37(5): 175-179, 201.
[8]
张玉玲,谷勇霞,赵杰亮,等.机械臂臂杆刚度主动控制下的末端振动特性研究[J].力学学报,2020,52(4): 985-995. ZHANG Y L, GU Y X, ZHAO J L, et al. Research on end vibration characteristics of the manipulator end under active control of arm stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 985-995.
[9]
王海,付邦晨,薛彬,等.六自由度柔性关节机械臂的动力学分析[J].中国机械工程, 2016, 27(8):1096-1101. doi:10.3969/j.issn.1004-132X.2016.08.018 WANG H, FU B C, XUE B, et al. Dynamic analysis of a 6-DOF manipulators with flexible joints[J]. China Mechanical Engineering, 2016, 27(8): 1096-1101.
doi: 10.3969/j.issn.1004-132X.2016.08.018
[10]
沈国栋.考虑关节柔性的六自由度串联工业机器人动力学建模与末端抖动抑制[D].济南:山东大学,2020: 15-22. doi:10.1109/rcar52367.2021.9517338 SHEN G D. Dynamic modeling and terminal jitter suppression of a 6-DOFseries industrial robot considering joint flexibility[D]. Jinan: Shandong University, 2020:15-22.
doi: 10.1109/rcar52367.2021.9517338
[11]
祝寒友,吴松,陈必发,等.柔性机械臂关节作动的振动抑制方法和原理性验证[J].上海航天,2022,39(6):37-42,74. ZHU H Y, WU S, CHEN B F, et al. Principle verification and joint-actuator method for vibration suppression of flexible manipulator[J]. Aerospace Shanghai, 2022, 33(6): 37-42, 74.
[12]
梁明轩,李正刚,唐任仲,等.基于柔性多体动力学的机械臂结构优化设计[J].中国机械工程,2017,28(21): 2562-2566. doi:10.3969/j.issn.1004-132X.2017.21.008 LIANG M X, LI Z G, TANG R Z, et al. Structure optimization design of robot arm based on flexible multi-body dynamics[J]. China Mechanical Engineering, 2017, 28(21): 2562-2566.
doi: 10.3969/j.issn.1004-132X.2017.21.008
[13]
BILAL H, YIN B Q, KUMAR A, et al. A jerk-bounded trajectory planning for rotary flexible joint manipulator: An experimental approach[J]. Soft Computing, 2023, 27(7): 4029-4039.
[14]
KUMAR P, PRATIHER B. Nonlinear dynamic analysis of a multi-link manipulator with flexible links-joints mounted on a mobile platform[J]. Advances in Space Research, 2023, 71(5): 2095-2127.
[15]
李瑞强,王欣,高顺德.基于ADAMS-Cable的多机吊装刚柔耦合动力学分析[J].港口装卸,2016(3):4-8. doi:10.3963/j.issn.1000-8969.2016.03.002 LI R Q, WANG X, GAO S D. Rigid-flexible coupling dynamic analysis for multi-crane lifting based on ADAMS-Cable[J]. Port Operation, 2016(3): 4-8.
doi: 10.3963/j.issn.1000-8969.2016.03.002
[16]
韩莉莉,许军辉,宁祎,等.基于ADAMS/Cable模块的柔索驱动仿真研究[J].中原工学院学报,2014,25(6):1-5. doi:10.3969/j.issn.1671-6906.2014.06.001 HAN L L, XU J H, NING Y, et al. Research on simulation of cable drive based on ADAMS/Cable[J]. Journal of Zhongyuan University of Technology, 2014, 25(6): 1-5.
doi: 10.3969/j.issn.1671-6906.2014.06.001
[17]
张营章,张顺心,崔少杰,等.基于ADAMS/Cable的起重机钢丝绳的仿真分析[J].制造业自动化,2013,35(13):10-12. doi:10.3969/j.issn.1009-0134.2013.13.004 ZHANG Y Z, ZHANG S X, CUI S J, et al. Simulation analysis for the wire rope of the crane based on ADAMS/Cable[J]. Manufacturing Automation, 2013, 35(13): 10-12.
doi: 10.3969/j.issn.1009-0134.2013.13.004
[18]
韩崇瑞.基于刚柔耦合动力学仿真的塔式起重机疲劳寿命分析[D].北京:北京建筑大学,2021:40-44. HAN C R. Fatigue life analysis of tower crane based on rigid-flexible coupling dynamics simulation[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021: 40-44.
[19]
颜世军,刘运思,彭剑.超长柔吊装臂架回转作业刚柔耦合动力学模型与分析[J].应用力学学报,2018, 35(6): 1288-1294,1421. doi:10.11776/cjam.35.06.C043 YAN S J, LIU Y S, PENG J. Rigid-flexible coupling dynamics model and analysis of ultra flexible hoisting boom in rotating operation[J]. Chinese Journal of Applied Mechanics, 2018, 35(6): 1288-1294, 1421.
doi: 10.11776/cjam.35.06.C043
[20]
郑宇锋,王殿龙.考虑吊钩组升降的伸缩臂起重机动力学模型研究[J].大连理工大学学报,2017, 57(3):259-265. ZHENG Y F, WANG D L. Study of dynamic model of telescopic crane with a lifting and pulling load movement[J]. Journal of Dalian University of Technology, 2017, 57(3): 259-265.