Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (4): 399-408    DOI: 10.3785/j.issn.1006-754X.2023.00.057
【Subject Column】 Digital Twin·Intelligent Manufacturing     
Intelligent design and scheduling optimization of painted body storage based on digital pedestal system
Baicun WANG1,2(),Kailing ZHU1,Jinsong BAO3,Feng WANG2,4,Haibo XIE1,2,Huayong YANG1,2
1.School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
2.Institute of Advanced Machines, Zhejiang University, Hangzhou 311106, China
3.College of Mechanical Engineering, Donghua University, Shanghai 201620, China
4.Wuxi Xuelang Industrial Intelligence Technology Co. , Ltd. , Wuxi 214131, China
Download: HTML     PDF(4487KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Digital modeling, system simulation and optimization in the automotive production process are of great significance for improving the quality and efficiency of automotive production. In order to solve the common problem of low resource allocation efficiency caused by data link breakage in automobile manufacturing enterprises, a new type of digital pedestal system was proposed based on the painted body storage (PBS) of automobile, to achieve data chain integration and multi-source heterogeneous data fusion. At the same time, a vehicle sequencing strategy for PBS was designed, taking into account the constraints of the final assembly process on sequence optimization. The PBS outbound sequence was obtained by a genetic algorithm, and then the inverse ordinal pair was used as a reference index for PBS lane layout. The effectiveness of the proposed method and strategy was verified by applying the PBS system based on digital pedestal system to a certain automotive manufacturing enterprise. The research results provide a reference for enterprises to build internal integrated manufacturing platforms and design specific workshop units.



Key wordspainted body storage      digital pedestal system      system design      modeling and simulation      sequencing optimization     
Received: 15 June 2023      Published: 04 September 2023
CLC:  TP 273  
Cite this article:

Baicun WANG,Kailing ZHU,Jinsong BAO,Feng WANG,Haibo XIE,Huayong YANG. Intelligent design and scheduling optimization of painted body storage based on digital pedestal system. Chin J Eng Design, 2023, 30(4): 399-408.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.057     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I4/399


基于数字底座的涂装车身缓存区智能设计与调度优化

在汽车生产环节进行数字建模、系统仿真与优化对提升汽车的生产质量和效率具有重要意义。为了解决目前汽车制造企业普遍存在的因数据链断裂而导致的资源配置效率低下等难题,以汽车涂装车身缓存区(painted body storage,PBS)为研究对象,提出了一种新型的数字底座平台,来实现数据链整合和多源异构数据融合。同时,设计了一种针对PBS的车身调序策略,考虑了总装工艺对车序优化的约束,采用遗传算法获得了PBS出车序列,然后以逆序数对为参考指标,进行PBS车道排布。将基于数字底座的PBS系统应用于某汽车制造企业,应用效果验证了所提出方法和策略的有效性。研究结果为企业构建内部集成制造平台和设计具体车间单元提供了参考。


关键词: 涂装车身缓存区,  数字底座,  系统设计,  建模仿真,  调序优化 
Fig.1 Four major processes in automobile production
Fig.2 PBS system framework based on digital pedestal system
Fig.3 PBS physical system framework
Fig.4 Vehicle inbound and outbound process within PBS
Fig.5 PBS optimization simulation based on digital pedestal system
Fig.6 Algorithm framework for PBS vehicle sorting
Fig.7 Schematic diagram of vehicle type sorting and coding
Fig.8 Schematic diagram of lane sorting strategy
生产参数量值
产量400辆/d
平均生产节拍108 s
PBS静态库容量80辆
PBS进车道数7条
PBS返回车道数1条
Table 1 Production parameters of a certain automobile manufacturing enterprise
Fig.9 PBS system application model based on digital pedestal system
Fig.10 Interface of PBS system application model
评价指标指标含义量值
应用前应用后
PBS流转时间/h车辆在PBS的平均流转时间1.261.17
物料准备失败率/%每月因物料准备失败造成的误出库车辆与每月汽车总产量之比0.0250.004
异常状态预警对存在的异常状态进行预警
生产综合效率/%实际产量与计划产量之比86.987.6
Table 2 Application effect of PBS system
[1]   雷晓斌,柴雯,马冬妍,等.我国汽车企业与新一代信息技术融合发展现状与趋势研究[J].制造业自动化,2021,43(12):37-42. doi:10.3969/j.issn.1009-0134.2021.12.009
LEI X B, CHAI W, MA D Y, et al. Research on the development status and trend of the integration of Chinese automobile enterprises and new generation of information technology[J]. Manufacturing Automation, 2021, 43(12): 37-42.
doi: 10.3969/j.issn.1009-0134.2021.12.009
[2]   杨华勇,王峰,王柏村,等.“工业数据+工业机理”驱动的数字底座系统:助推新型工业化[J].新型工业化,2023,13(3):10-15.
YANG H Y, WANG F, WANG B C, et al. Digital pedestal system (DPS) driven by “industrial data plus industrial mechanism” boosts new industrialization[J]. The Journal of New Industrialization, 2023,13(3): 10-15.
[3]   LI L, LEI B, MAO C. Digital twin in smart manufacturing[J]. Journal of Industrial Information Integration, 2022, 26: 100289.
[4]   张培,黄智源,陈琨,等.数字化车间多源异构质量数据集成方案研究[J].现代制造工程,2015(1):59-65. doi:10.3969/j.issn.1671-3133.2015.01.012
ZHANG P, HUANG Z Y, CHEN K, et al. Research on multi-source heterogeneous quality data integration in digital shop[J]. Modern Manufacturing Engineering, 2015(1): 59-65.
doi: 10.3969/j.issn.1671-3133.2015.01.012
[5]   SYAFRUDIN M, ALFIAN G, FITRIYANI N L, et al. Performance analysis of IoT-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing[J]. Sensors, 2018, 18(9): 2946-2972
[6]   夏栋. 总装厂多车型生产线改造及产能提升研究[D].长安:长安大学,2018:1-5.
XIA D. The research on the renovation and productive capacity of the mixing line in the assembly plant[D]. Chang'an: Chang'an University, 2018:1-5.
[7]   李燚.面向汽车混流生产的多级流水车间排产与调度问题研究[D].重庆:重庆大学,2021:34-39.
LI Y. Research on multi-level flow shop scheduling and dispatching for automobile mixed-flow production[D]. Chongqing: Chongqing University, 2021: 34-39.
[8]   武文杰.白车身混流焊装线物流仿真和投产序列研究[D].合肥:合肥工业大学,2016:3-4.
WU W J. The BIW mixed welding line logistics simulation and production sequence research[D]. Hefei: Hefei University of Technology, 2016: 3-4.
[9]   杨一昕,袁兆才,皮智波,等.智能透明汽车工厂的构建与实施[J].中国机械工程,2018,29(23):2867-2874. doi:10.3969/j.issn.1004-132X.2018.23.014
YANG Y X, YUAN Z C, PI Z B, et al. Construction and implementation of intelligent transparent automotive factories[J]. China Mechanical Engineering, 2018, 29(23): 2867-2874.
doi: 10.3969/j.issn.1004-132X.2018.23.014
[10]   ZHANG X, MING X. An implementation for smart manufacturing information system (SMIS) from an industrial practice survey[J]. Computers & Industrial Engineering, 2021, 151: 106938.
[11]   JALILVAND-NEJAD A, FATTAHI P. A mathematical model and genetic algorithm to cyclic flexible job shop scheduling problem[J]. Journal of Intelligent Manufacturing, 2015, 26(6): 1085-1098.
[12]   SHEN Z, TANG Q, HUANG T. Dynamic production scheduling modeling and multi-objective optimization for automobile mixed-model production[J]. Communications in Computer and Information Science, 2018, 924: 25-33.
[13]   胡婷婷,叶建.基于两阶段匹配度的PBS路由调度策略的研究[J].现代制造技术与装备,2017(5):3. doi:10.3969/j.issn.1673-5587.2017.05.083
HU T T, YE J. Research on PBS routing scheduling strategy based on two stage matching degree[J]. Modern Manufacturing Technology and Equipment, 2017(5): 3.
doi: 10.3969/j.issn.1673-5587.2017.05.083
[14]   WU J, DING Y, SHI L. Mathematical modeling and heuristic approaches for a multi-stage car sequencing problem[J]. Computers & Industrial Engineering, 2021, 152: 107008.
[15]   SHEN Z, TANG Q, HUANG T. Dynamic production scheduling modeling and multi-objective optimization for automobile mixed-model production[J]. Communications in Computer and Information Science, 2018, 924: 25-33.
[16]   王柏村,薛塬,延建林,等.以人为本的智能制造:理念、技术与应用[J].中国工程科学,2020,22(4):139-146. doi:10.15302/j-sscae-2020.04.020
WANG B C, XUE Y, YAN J L, et al. Human-centered intelligent manufacturing: Overview and perspectives[J]. Strategic Study of CAE, 2020, 22(4): 139-146.
doi: 10.15302/j-sscae-2020.04.020
[17]   陈广阳.汽车生产线缓冲区设计及排序问题研究[D].武汉:华中科技大学,2007:9-12. doi:10.1007/s11596-007-0118-x
CHEN G Y. Research on buffer design and resequence in automobile production line[D]. Wuhan: Huazhong University of Science and Technology, 2007: 9-12.
doi: 10.1007/s11596-007-0118-x
[18]   马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,29(4):1201-1206,1210. doi:10.3969/j.issn.1001-3695.2012.04.001
MA Y J, YUN W X. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, 29(4): 1201-1206, 1210.
doi: 10.3969/j.issn.1001-3695.2012.04.001
[19]   丁述勇,张征,丁文洁,等.多巷道式立体车库优化设计与车辆存取策略研究[J].工程设计学报,2021,28(4):443-449. doi:10.3785/j.issn.1006-754X.2021.00.055
DING S Y, ZHANG Z, DING W J, et al. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
doi: 10.3785/j.issn.1006-754X.2021.00.055
[1] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chin J Eng Design, 2023, 30(5): 579-589.
[2] FU Min, LI Chen-xi, ZHENG Zhao-qi. Design and analysis of semi-automatic screw type pineapple picking-collecting machine[J]. Chin J Eng Design, 2020, 27(4): 487-497.
[3] QIAN Jin-yuan, JIN Zhi-jiang. Obstacle contained system (OCS) design method and its application in valve core orifice design of pilot-control globe valve[J]. Chin J Eng Design, 2017, 24(5): 496-502,517.
[4] SHEN Wen-Qi, ZHAN Li-Hua, HUANG Ming-Hui, CHEN Min. The pressure relief impacts improvement research of 4000t-die-forging press[J]. Chin J Eng Design, 2013, 20(5): 387-392.
[5] GAO Song, WANG Hong-Pei, TAN De-Rong, WANG Xiao-Yuan, MENG Hua. Modeling and simulation on auto adaptive frontlight system for 
turn corner based on cloud model
[J]. Chin J Eng Design, 2011, 18(5): 359-364.
[6] CHEN Chang, TANG Jin-Yuan. Bond graph modeling and dynamic simulation of damper test-bed's hydraulic system based on 20-sim software[J]. Chin J Eng Design, 2010, 17(5): 339-344.
[7] DIAO Hong-Quan, HU Wei-Xiong, YAN Gang-Feng. Design of electronic jacquard detector system[J]. Chin J Eng Design, 2004, 11(2): 93-95.
[8] QIU Lin-Jin, QIU Qing-Ying, HE Bin. Research on knowledge m odeling and its organizational strategy of complex transmitting system[J]. Chin J Eng Design, 2002, 9(5): 251-256.
[9] JIANG Wen. System Design—A Way for Combining the Function of Product[J]. Chin J Eng Design, 2001, 8(1): 28-30.