Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (4): 495-502    DOI: 10.3785/j.issn.1006-754X.2023.00.058
Mechanical Optimization Design     
Distributed co-simulation and dynamic optimization of axial piston pump based on FMI
Zhimin GUO1,4(),Haishu DAI2,3,Jiang ZHAI1,4,Haocen HONG2,3,Baicun WANG2,3(),Haibo XIE2,3,Huayong YANG2,3
1.Linde Hydraulic (China) Co. , Ltd. , Weifang 261205, China
2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic systems, Zhejiang University, Hangzhou 310058, China
3.Institute of Advanced Machines, Zhejiang University, Hangzhou 311106, China
4.Weichai Power Co. , Ltd. , Weifang 261205, China
Download: HTML     PDF(4508KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The co-simulation method can be used to analyze the kinematics, dynamics performance and hydraulic system characteristics of piston pump in real time, which can be widely used in the design and optimization of piston pump products. A distributed co-simulation of axial piston pump based on functional mock-up interface (FMI) was proposed to address the shortcomings of high discretization of analysis and optimization and low efficiency in traditional optimization processes. By developing automatic optimization components, the iterative optimization of key structural parameters of damping groove was achieved. Firstly, kinematics and dynamics analysis was carried on the piston pump shaft system, and the motion model and force model of the piston pump shaft system were established to determine the constraint relationship of shaft system components; secondly, a co-simulation model of the piston pump was established to study the motion, force, and deformation characteristics of the piston pump; then, a distributed co-simulation model of the piston pump was built based on cloud server, and heterogeneous scheduling of each simulation software was achieved through FMI technology; finally, based on cloud platform architecture, an optimization calculation template for the damping groove of piston pump was developed, achieving the solution of the optimal structural parameters of the damping groove and its automatic model creation. The simulation results showed that after optimizing the damping groove structure, the outlet flow pulsation rate of the piston pump was reduced by 35.78%. The proposed method can effectively improve the efficiency of simulation and optimization, and reduce the workload of research and development personnel.



Key wordsaxial piston pump      distributed modeling      hybrid modeling      dynamic optimization     
Received: 28 June 2023      Published: 04 September 2023
CLC:  TP 137.51  
Corresponding Authors: Baicun WANG,Huayong YANG     E-mail: krdp_pump20@foxmail.com;baicunw@zju.edu.cn
Cite this article:

Zhimin GUO,Haishu DAI,Jiang ZHAI,Haocen HONG,Baicun WANG,Haibo XIE,Huayong YANG. Distributed co-simulation and dynamic optimization of axial piston pump based on FMI. Chin J Eng Design, 2023, 30(4): 495-502.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.058     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I4/495


基于FMI的轴向柱塞泵分布式联合仿真与动态优化

运用联合仿真的方法能够实时分析柱塞泵的运动学、动力学性能以及液压系统特性,其可广泛应用于柱塞泵产品的设计与优化。针对传统优化过程中分析与优化的离散化、效率低等不足,提出了一种基于功能模型接口(functional mock-up interface,FMI)的轴向柱塞泵分布式联合仿真方法,通过开发自动优化组件,实现对阻尼槽结构参数的迭代优化。首先,进行柱塞泵轴系运动学、动力学分析,建立其运动模型和受力模型,来确定轴系组件的约束关系;其次,搭建了柱塞泵联合仿真模型,研究了柱塞的运动、受力和变形特性;然后,基于云端服务器搭建了柱塞泵分布式联合仿真模型,通过FMI技术实现了各个仿真软件的同步调用;最后,基于云平台架构,开发了柱塞泵阻尼槽优化设计模板,实现了对阻尼槽最优结构参数的求解及其模型自动创建。仿真结果表明,阻尼槽结构优化后,柱塞泵出口流量脉动率降低了35.78%。所提出的方法能有效提高仿真与优化的效率,减轻研发人员的工作负担。


关键词: 轴向柱塞泵,  分布式建模,  混合建模,  动态优化 
Fig.1 Schematic diagram of piston movement of axial piston pump
Fig.2 Force analysis of axial piston pump with piston located at the external dead center
参数量值参数量值
柱塞直径22 mm分布圆半径45 mm
死区容积15 cm3柱塞角距40°
等效节流直径15 mm柱塞油膜间隙30 μm
配流油膜间隙20 μm柱塞偏心距0.015 mm
出/入口压力2 MPa滑靴油膜间隙30 μm
泵壳压力0.5 MPa节流系数0.76
油液密度875 kg/m3体积弹性模量1 100 MPa
Table 1 Main structural parameters of axial piston pump
Fig.3 Dynamic model of axial piston pump
Fig.4 Simulation model of hydraulic system of axial piston pump
Fig.5 Co-simulation analysis template component of axial piston pump
Fig.6 Displacement and velocity curve of piston centroid
Fig.7 Deformation nephogram of piston and sliding shoe
Fig.8 Flow and pressure curves of a single piston chamber
Fig.9 Pump outlet flow and pressure curves
Fig.10 Pump outlet flow curve with different cylindrical groove diameters
Fig.11 Structure of damping groove
Fig.12 Optimization design component of valve plate
Fig.13 Comparison of pump outlet flow before and after optimization
[1]   DEEKEN M. Simulation of the tribological contacts in an axial piston machine[C]//ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, Nov. 13-19, 2004.
[2]   张斌. 轴向柱塞泵的虚拟样机及油膜压力特性研究[D]. 杭州:浙江大学,2009. doi:10.3901/cjme.2009.01.084
ZHANG B. Virtual prototype of axial piston pump and study of oil film pressure characteristics[D]. Hangzhou: Zhejiang University, 2009.
doi: 10.3901/cjme.2009.01.084
[3]   杨智炜,徐兵,张斌.基于虚拟样机技术的轴向柱塞泵特性仿真[J].液压气动与密封,2006(3):33-36. doi:10.3969/j.issn.1008-0813.2006.03.016
YANG Z W, XU B, ZHANG B. Simulation of axial piston pump characteristic based on virtual prototype technology[J]. Hydraulics Pneumatics & Seals, 2006(3): 33-36.
doi: 10.3969/j.issn.1008-0813.2006.03.016
[4]   何锐华. 基于ADAMS和AMESim的浮杯式轴向柱塞泵联合仿真研究[D]. 长春:吉林大学,2013.
HE R H. Co-simulation of floating cup axial piston pump based on ADAMS and AMESim[D]. Changchun: Jilin University, 2013.
[5]   梁海健. 斜盘式微小型定量轴向柱塞泵研究[D].哈尔滨:哈尔滨工业大学,2018.
LIANG H J. Research on swashplate micro-sized quantitative axial piston pump[D]. Harbin: Harbin Institute of Technology, 2018.
[6]   权凌霄,闫桂山,俞滨,等.斜轴式轴向柱塞泵伺服变量机构控制特性多学科协同仿真分析[J].液压与气动, 2014(9):58-65.
QUAN L X, YAN G S, YU B, et al. Multidisciplinary co-simulation analysis for variable servo mechanism of axial piston pump on control characteristic[J]. Chinese Hydraulics & Pneumatics, 2014(9): 58-65.
[7]   梁德栋,李毅波,潘阳,等.柱塞泵多目标优化设计及CFD仿真分析[J].计算力学学报, 2018, 35(3):350-355.
LIANG D D, LI Y B, PAN Y, et al. Multi-objective optimization design and CFD simulation analysis of piston pump[J]. Chinese Journal of Computational Mechanics, 2018, 35(3): 350-355.
[8]   杨馥霖.基于多体动力学轴向柱塞泵回程盘仿真研究与优化设计[D].兰州:兰州理工大学,2019.
YANG F L. Simulation research and optimization design of return plate of axial piston pump based on multi-body dynamics [D]. Lanzhou: Lanzhou University of Technology, 2019.
[9]   王晓晶,陈帅,张梦俭. 基于ADAMS和AMEsim的斜盘式轴向柱塞泵联合仿真[J].哈尔滨理工大学学报,2020,25(1):9-14.
WANG X J, CHEN S, ZHANG M J. Based on dynamics and hydraulic system coupling simulation of swash plate axial piston pump[J]. Journal of Harbin University of Science and Technology, 2020, 25(1): 9-14.
[10]   张斌,徐兵,杨华勇. 基于虚拟样机技术的数字式柱塞泵控制特性研究[J].浙江大学学报(工学版),2010,44(1):1-7. doi:10.3785/j.issn.1008-973X.2010.01.001
ZHANG B, XU B, YANG H Y. Study on control performance of digital piston pump based on virtual prototype technology[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(1): 1-7.
doi: 10.3785/j.issn.1008-973X.2010.01.001
[11]   VACCA A, FRANZONI G. Hydrostatic pumps and motors[M]. New York: Wiley, 2021: 123-161.
[12]   HONG H C, ZHANG B, YU M,et al. Analysis and optimization on U-shaped damping groove for flow ripple reduction of fixed displacement axial-piston pump[J]. International Journal of Fluid Machinery and Systems, 2020, 13(1): 126-135.
[13]   HONG H C, ZHAO C X, ZHANG B,et al. Flow ripple reduction of axial-piston pump by structure optimizing of outlet triangular damping groove[J]. Processes, 2020, 8(12): 1664.
[14]   谢佑.基于FMI的联合仿真与参数优化[D].武汉:华中科技大学,2017.
XIE Y. Co-simulation and parameter optimization based on FMI [D]. Wuhan: Huazhong University of Science and Technology, 2017.
[15]   赵杨杨.基于FMI的一体化仿真平台及其在航天工程中的应用[D].哈尔滨:哈尔滨工业大学, 2013.
ZHAO Y Y. Integrated simulation platform based on functional mockup-interface and its application on aerospace engineering[D]. Harbin: Harbin Institute of Technology, 2013.
[16]   吕文军.基于FMI的多物理系统仿真研究与应用[J].智能制造,2019(8):39-40. doi:10.3969/j.issn.1671-8186.2019.08.016
LÜ W J. Research and application of multi-physical system simulation based on FMI[J]. Intelligent Manufacturing, 2019(8): 39-40.
doi: 10.3969/j.issn.1671-8186.2019.08.016
[17]   贾旭,李磊,王勇,等. 基于ADAMS柔性模型的轴向柱塞泵动力学仿真[J].液压气动与密封,2011, 31(6):22-24. doi:10.3969/j.issn.1008-0813.2011.06.008
JIA X, LI L, WANG Y, et al. Dynamic simulation of axial piston pump based on ADAMS flexible contact-impact[J]. Hydraulics Pneumatics & Seals, 2011, 31(6): 22-24.
doi: 10.3969/j.issn.1008-0813.2011.06.008
[18]   吴小锋,何亚峰,黄志荣,等.轴向柱塞泵多学科融合建模与集成优化[J].航空动力学报,2018,33(5):1245-1255. doi:10.13224/j.cnki.jasp.2018.05.027
WU X F, HE Y F, HUANG Z R, et al. Multidisciplinary modeling and integrated optimization of axial piston pump[J]. Journal of Aerospace Power, 2018, 33(5): 1245-1255.
doi: 10.13224/j.cnki.jasp.2018.05.027
[1] Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump[J]. Chin J Eng Design, 2022, 29(4): 401-409.
[2] DENG Hai-shun, HUANG Kun, HUANG Ran, WANG Chuan-li, DENG Yue-fei. Swash plate moment property modeling and analysis of balanced two-ring axial piston pump[J]. Chin J Eng Design, 2016, 23(6): 592-599.
[3] LI Xiao-huo, SHI Shang-wei, WENG Zheng-yang, QIAN Ya-sen, LI Yan, YANG Zi-jia. Dynamic optimization of working mechanism for impacting and crushing rock road-header based on BP-GA[J]. Chin J Eng Design, 2016, 23(4): 358-363.