1.National Engineering Research Center for Marine Geophysical Prospecting and Exploration and Development Equipment, China University of Petroleum (East China), Qingdao 266555, China 2.Installation Division, Offshore Petroleum Engineering Co. , Ltd. , Tianjin 300450, China 3.School of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
The performance of ultra-deep water pile hammer system directly affects the construction progress of large offshore oil and gas platforms. In order to conduct in-depth research on the failure mechanism of ultra-deep water pile hammer system, the reliability analysis and allocation research for the system was carried out. Firstly, the failure mode and effect analysis (FMEA) was conducted on the ultra-deep water pile hammer system, and an improved criticality analysis (CA) method was proposed based on the FMEA results. Then, using the improved AGREE (advisory group on reliability of electronic equipment) allocation method and reliability allocation method based on FMECA (failure mode, effect and criticality analysis), the reliability allocation research was carried out successively for subsystems and components of the ultra-deep water pile hammer system. Finally, the visual interface of the CA and reliability allocation process of ultra-deep water pile hammer system was designed in the MATLAB App Designer development environment. The results showed that there were a total of 27 failure modes in the ultra-deep water pile hammer system, and 9 components such as steel piles were weak links in the system; the system reliability after primary and secondary reliability allocation was 0.999 063 22 and 0.999 063 27, respectively. The reliability study of the ultra-deep water pile hammer system has identified the weak links of the system, which can provide certain theoretical guidance for its domestic design.
Jianghao LI,Wensheng XIAO,Wentai YU,Hongyan WANG,Shunqing LIU,Youfu SUN. Reliability analysis and allocation research of ultra-deep water pile hammer system. Chin J Eng Design, 2023, 30(4): 485-494.
超深水打桩锤系统的性能直接影响大型海洋油气平台的建设进度。为深入研究超深水打桩锤系统的故障机理,对系统进行可靠性分析与分配研究。首先,对超深水打桩锤系统进行故障模式与影响分析(failure mode and effect analysis, FMEA),并基于FMEA结果提出了一种改进的危害性分析(criticality analysis, CA)方法。然后,运用改进的AGREE(advisory group on reliability of electronic equipment,电子设备可靠性咨询组)分配法及基于FMECA(failure mode, effect and criticality analysis,故障模式、影响与危害性分析)的可靠性分配方法,对超深水打桩锤系统的子系统和零部件依次进行可靠性分配研究。最后,在MATLAB App Designer开发环境下对超深水打桩锤系统的CA及可靠性分配过程进行可视化界面设计。结果表明,超深水打桩锤系统共有27种故障模式,钢桩等9个零部件为系统薄弱环节;经一、二次可靠性分配后,系统可靠度分别为0.999 063 22,0.999 063 27。超深水打桩锤系统的可靠性研究识别了系统的薄弱环节,为其国产化设计提供了一定的理论指导。
Fig.1 Application scenario of ultra-deep water pile hammer system
故障模式
故障代号
故障模式
故障代号
泄漏(液体)
LK(LIQ)
振动/噪声
VIB/N
泄漏(气体)
LEAK(G)
控制/信号失效
CTRL/SIG F
输出不稳定
UO
高温/声音异常
HT/CAC
输入不稳定
UI
锈蚀
C
磨损
ABW
性能改变
CAPCHG
变形
Dept.
堵塞
PLU
裂纹
Crack
杂质过多
SI
松脱
S
摩擦
FRICT
断裂
FRF
动作异常
ABAC
疲劳失效
FF
线路异常
ABLN
短路
SC
功能失效
MPFF
断路
OC
不能满足工作需求
FTF
打开/锁紧失效
OPN/L F
其他轻微故障
OTHSLTFLT
综合因素/常见失效
COMF
Table 1Common failure modes of ultra-deep water pile hammer system
Fig.2 Statistical results of failure modes of ultra-deep water pile hammer system
严酷度等级
故障类型
分级标准
1
微小故障
系统功能稍有退化,对人员、财产、生态环境不构成危害,完成作业后检修、维护即可
2
临界故障
系统功能退化或作业误差较大,对人员、财产、生态环境不构成危害
3
较严重故障
系统短时间内停机,对人员、财产、生态环境构成较大危害
4
严重故障
系统丧失部分功能且长时间停机,对人员、财产、生态环境构成严重危害
5
灾难性故障
系统丧失功能,甚至造成机毁人亡、巨额财产损失及不可恢复的海洋环境污染
Table 2Evaluation criteria for the severity of failures in ultra-deep water pile hammer system
零部件
故障模式
λp/10-6h-1
αi /%
si
t/h
Cp
电液换向阀
泄漏(液体)
0.03
0.74
3
43 800
0.481 500 089
不能满足工作需求
0.58
14.29
3
打开/锁紧失效
0.03
0.74
3
高/低输出
3.30
81.28
4
堵塞
0.12
2.96
4
其他液压阀组
异常磨损
0.20
6.83
3
43 800
0.236 231 488
不能按需关闭
0.14
4.78
3
不能满足工作需求
2.27
77.47
3
打开/锁紧失效
0.10
3.41
2
堵塞
0.22
7.51
3
液压缸
油管变形
0.16
4.36
2
70 080
0.201 032 214
拉缸
1.15
31.34
3
导向套锈蚀
0.15
4.09
2
活塞杆不能动作
0.17
4.63
3
缓冲装置故障
0.87
23.71
3
外泄漏
1.17
31.88
3
Table 3Criticality analysis results of components of ultra-deep water pile hammer system(part)
Fig.3 Reliability block diagram of ultra-deep water pile hammer subsystem
子系统
零部件数量/个
复杂度
危害度
重要度
传统方法
改进方法
合计
30
1
16.760 461 35
液压系统
7
0.233 3
1.211 855 80
1
0.268 894 85
气压系统
5
0.166 7
0.141 661 43
1
0.091 935 41
电控系统
7
0.233 3
1.217 747 68
1
0.269 547 73
机械系统
6
0.200 0
13.635 796 18
1
0.901 980 74
动力系统
5
0.166 7
0.553 400 26
1
0.181 709 11
Table 4Basic parameters of AGREE allocation method
子系统
传统AGREE分配法
改进AGREE分配法
预计数据
可靠度
失效率
可靠度
失效率
可靠度
失效率
液压系统
0.999 953 33
0.000 046 67
0.999 826 44
0.000 173 56
0.999 981 400 2
0.000 018 599 8
气压系统
0.999 966 66
0.000 033 34
0.999 637 40
0.000 362 60
0.999 994 990 0
0.000 005 010 0
电控系统
0.999 953 33
0.000 046 67
0.999 826 86
0.000 173 14
0.999 974 890 3
0.000 025 109 7
机械系统
0.999 960 00
0.000 040 00
0.999 955 65
0.000 044 35
0.999 922 752 8
0.000 077 247 2
动力系统
0.999 966 66
0.000 033 34
0.999 816 54
0.000 183 46
0.999 977 290 2
0.000 022 709 8
Table 5Reliability allocation results of ultra-deep water pile hammer subsystem
Fig.4 Comparison of reliability of ultra-deep water pile hammer subsystem based on different AGREE allocation methods
子系统
零部件
危害度
权重
失效率
可靠度
液压系统
电液换向阀
0.481 500 089
0.397 324 572
0.000 000 57
0.999 999 43
其他阀组
0.236 231 488
0.194 933 661
0.000 001 16
0.999 998 84
液压缸
0.201 032 214
0.165 887 900
0.000 001 36
0.999 998 64
液压泵
0.274 127 586
0.226 204 789
0.000 001 00
0.999 999 00
液压油
0.002 978 400
0.002 457 718
0.000 091 89
0.999 908 11
油箱
0.010 730 027
0.008 854 211
0.000 025 51
0.999 974 49
蓄能器
0.005 256 000
0.004 337 150
0.000 052 07
0.999 947 93
气压系统
空压机
0.077 528 475
0.547 280 069
0.000 004 63
0.999 995 37
空气过滤器
0.004 077 639
0.028 784 399
0.000 087 95
0.999 912 05
油雾器
0.002 340 492
0.016 521 731
0.000 153 23
0.999 846 77
油压缓冲器
0.003 253 714
0.022 968 243
0.000 110 22
0.999 889 78
气动阀组
0.054 461 106
0.384 445 558
0.000 006 58
0.999 993 42
电控系统
变压器
0.754 532 522
0.619 613 190
0.000 001 60
0.999 998 40
可编程逻辑控制器
0.116 946 000
0.096 034 673
0.000 010 35
0.999 989 65
以太网交换机
0.100 740 000
0.082 726 498
0.000 012 01
0.999 987 99
断路器
0.031 536 000
0.025 896 991
0.000 038 37
0.999 961 63
继电器
0.019 146 702
0.015 723 045
0.000 063 20
0.999 936 80
电磁先导阀
0.030 044 091
0.024 671 852
0.000 040 27
0.999 959 73
各类传感器
0.164 802 360
0.135 333 750
0.000 007 34
0.999 992 66
机械系统
锤头(锤芯)
1.199 456 633
0.088 258 652
0.000 001 15
0.999 998 85
砧铁
1.035 610 776
0.076 202 514
0.000 001 34
0.999 998 66
钢桩
10.737 918 915
0.790 119 645
0.000 000 13
0.999 999 87
桩帽
0.166 440 000
0.012 247 021
0.000 008 31
0.999 991 69
锤芯悬吊单元
0.450 817 858
0.033 172 168
0.000 003 07
0.999 996 93
减震环
0.045 552 000
0.076 052 806
0.000 030 36
0.999 969 64
动力系统
深水电机
0.109 965 513
0.183 596 458
0.000 021 23
0.999 978 77
压力补偿器
0.030 222 000
0.050 458 112
0.000 077 24
0.999 922 76
绞车
0.075 435 340
0.125 945 498
0.000 030 94
0.999 969 06
动态脐带缆
0.050 840 595
0.084 882 550
0.000 045 91
0.999 954 09
发电机组
0.286 936 809
0.479 064 576
0.000 008 14
0.999 991 86
Table 6Reliability allocation results of components of ultra-deep water pile hammer system
Fig.5 Visual interface for CA and reliability allocation of ultra-deep water pile hammer system
[1]
毕宇.海上风电单桩施工液压锤减震环故障分析及改进措施[J].船舶工程,2021,43():87-89,100. BI Y. Fault analysis and improvement measures of hydraulic hammer damping ring of offshore wind power single pile construction[J]. Ship Engineering, 2021, 43(): 87-89, 100.
[2]
GUO Y, HU J P, ZHANG L Y. Robust design of main control valve for hydraulic pile hammer flexible control system[J]. International Journal of Fluid Machinery and Systems, 2016, 9(1): 28-38.
[3]
LUO X F, HE H L, ZHANG X, et al. Failure mode analysis of intelligent ship positioning system considering correlations based on fixed-weight FMECA[J]. Processes, 2022, 10(12): 2677.
[4]
KADIR C. A knowledge based hierarchical reliability allocation (HIRAL) approach for shipboard systems[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2022, 236(4): 1098-1111.
[5]
吴红秋,谢里阳,王艺,等.基于改进AGREE方法的静叶调节机构可靠性分配[J].机电工程,2023,40(3):399-406. doi:10.3969/j.issn.1001-4551.2023.03.011 WU H Q, XIE L Y, WANG Y, et al. Reliability distribution of adjusting mechanism of variable stator vanes based on improved AGREE method[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(3): 399-406.
doi: 10.3969/j.issn.1001-4551.2023.03.011
[6]
杨超,狄鹏,陈童.基于区间分析的舰船装备可靠性模糊分配方法[J].工程设计学报,2015,22(4):317-323. doi:10.3785/j.issn.1006-754X.2015.04.003 YANG C, DI P, CHEN T. Fuzzy reliability allocation method for warship armaments based on interval analysis[J]. Chinese Journal of Engineering Design, 2015, 22(4): 317-323.
doi: 10.3785/j.issn.1006-754X.2015.04.003
[7]
陈斌,石磊,张大为,等.基于FMECA的水下多功能管汇可靠性分析[J].石油和化工设备,2023,26(1):16-18,21. doi:10.3969/j.issn.1674-8980.2023.01.004 CHEN B, SHI L, ZHANG D W, et al. Reliability analysis of subsea multi-function manifold based on FMECA[J]. Petro & Chemical Equipment, 2023, 26(1): 16-18, 21.
doi: 10.3969/j.issn.1674-8980.2023.01.004
[8]
肖龙林.卧螺离心机的可靠性研究[D].成都:电子科技大学,2011:23-25. XIAO L L. Research on reliability of horizontal centrifuge[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 23-25.
[9]
范晋伟,张理想,刘会普,等.基于FMECA与FTA的数控磨床数控系统可靠性分析[J].机床与液压,2022,50(10):188-191. doi:10.3969/j.issn.1001-3881.2022.10.034 FAN J W, ZHANG L X, LIU H P, et al. Reliability analysis for numerical control system of numerical control grinder based on FMECA and FTA[J]. Machine Tool & Hydraulics, 2022, 50(10): 188-191.
doi: 10.3969/j.issn.1001-3881.2022.10.034
[10]
OREDA Participants. Offshore reliability data handbook [M]. 6th ed. Trondheim: Det Norske Veritas, 2015:30-128.
[11]
PANYUKOV D I, KOZLOVSKII V N, AIDAROV D V, et al. Effectiveness of FMEA risk analysis[J]. Russian Engineering Research, 2022, 42(10): 1070-1072.
[12]
刘超.水下油气生产系统可靠性分析研究[D].青岛:中国石油大学(华东),2020:15-22. LIU C. Research on reliability analysis of subsea oil and gas production system[D]. Qingdao: China University of Petroleum (East China), 2020: 15-22.
[13]
聂萌.数控机床主轴可靠性分析[D].吉林:东北电力大学,2019:39-40. NIE M. Reliability analysis of CNC machine tool spindle [D]. Jilin: Northeast Electric Power University, 2019: 39-40.
[14]
肖文生,李江昊,于文太,等.基于Markov过程的超深水打桩锤系统可靠性研究[J].机电工程,2023,40(6):844-851. doi:10.3969/j.issn.1001-4551.2023.06.005 XIAO W S, LI J H, YU W T, et al. Reliability research of ultra-deep water pile hammer system based on Markov process[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(6): 844-851.
doi: 10.3969/j.issn.1001-4551.2023.06.005
[15]
WANG Y B, JIA X S, ZHAO J M, et al. Improvement of AGREE allocation method[C]//8th International Conference on Reliability, Maintainability and Safety, Chengdu, Jul. 20-24, 2009.
[16]
栗京京,孟海军,张盟,等.高温质子交换膜燃料电池系统可靠性分析[J].电源技术,2023,47(5):595-600. doi:10.3969/j.issn.1002-087X.2023.05.008 LI J J, MENG H J, ZHANG M, et al. Reliability analysis of high temperature proton exchange membrane fuel cell system[J]. Chinese Journal of Power Sources, 2023, 47(5): 595-600.
doi: 10.3969/j.issn.1002-087X.2023.05.008
[17]
卢晓煜.飞行汽车对接系统的设计及可靠性评估[D].西安:长安大学,2021:43-55. LU X Y. Design and reliability evaluation of flying vehicle docking system[D]. Xi’an: Chang’an University, 2021: 43-55.
[18]
李威伟.基于改进型AGREE法的车身控制系统可靠性分配[D].合肥:合肥工业大学,2014:14-15. LI W W. The reliability allocation for centralized body control system based on correction AGREE method[D]. Hefei: Hefei University of Technology, 2014: 14-15.
[19]
谢群亚.基于故障树的数控伺服刀架可靠性分配方法研究[D].长春:吉林大学,2017:57-75. XIE Q Y. Research on reliability allocation method of CNC servo turret based on fault tree analysis[D]. Changchun: Jilin University, 2017: 57-75.
[20]
李伟,赵建军,王超.基于MATLAB可视化界面的单缝衍射仿真分析[J].计算机应用与软件,2012,29(7):220-222,293. doi:10.3969/j.issn.1000-386X.2012.07.064 LI W, ZHAO J J, WANG C. Single-slit diffraction simulations and analysis based on MATLAB visual control interface[J]. Computer Applications and Software, 2012, 29(7): 220-222, 293.
doi: 10.3969/j.issn.1000-386X.2012.07.064
[21]
敖文刚,李勤,王歆.基于MATLAB的理论力学计算机辅助教学[J].力学与实践,2013,35(1):83-86. doi:10.6052/1000-0879-12-242 AO W G, LI Q, WANG X. Computer aided instruction of theoretical mechanics based on MATLAB[J]. Mechanics in Engineering, 2013, 35(1): 83-86.
doi: 10.6052/1000-0879-12-242