Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (4): 476-484    DOI: 10.3785/j.issn.1006-754X.2023.00.048
Mechanical Bionic Design     
Biomimetic design of hammer pieces for hammer mill based on beaver incisors
Jindong WANG(),Yuhong XIE(),Yi CHEN,Zhanyang WU
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML     PDF(2803KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the crushing efficiency and reduce energy consumption of the hammer mill, a new type of biomimetic hammer piece was designed with beaver incisors as biomimetic prototype. Firstly, the reverse reconstruction for beaver incisors was carried out to obtain an accurate three-dimensional model of beaver incisors. Then, the characteristic structure of beaver incisors was determined, extracted and characterized, and the obtained biomimetic coupling element was used for the tooth surface design of hammer pieces. Finally, through the hammer piece?material crushing simulation calculation, taking the fracture duration and maximum stress of material as the evaluation indicators of the biomimetic hammer piece performance, the response surface surrogate model of the structural parameters and performance indicators of the biomimetic hammer piece was constructed by the response surface method, and the optimal combination of structural parameters was solved by the Design-Expert software. The simulation results of material crushing showed that compared to ordinary hammer pieces, biomimetic hammer pieces caused larger material fractures, generated greater maximum stress when colliding with the material head-on, and required shorter time for material fracture. The experimental results of material crushing showed that after replacing the biomimetic hammer pieces, the production efficiency of the mill was higher and over crushing was improved, indicating that the service performance of the biomimetic hammer piece was better than that of the ordinary hammer piece. The research results can provide reference for the design of hammer pieces of mills for feed processing.



Key wordsbeaver incisor      hammer piece      biomimetic design      optimization     
Received: 29 September 2022      Published: 04 September 2023
CLC:  TH 122  
Corresponding Authors: Yuhong XIE     E-mail: wangjindong@swjtu.edu.cn;2331516202@qq.com
Cite this article:

Jindong WANG,Yuhong XIE,Yi CHEN,Zhanyang WU. Biomimetic design of hammer pieces for hammer mill based on beaver incisors. Chin J Eng Design, 2023, 30(4): 476-484.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.048     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I4/476


基于河狸门齿的锤片式粉碎机锤片仿生设计

为提高锤片式粉碎机的粉碎效率并降低其能耗,以河狸门齿为仿生原型,设计了一种新型仿生锤片。首先,对河狸门齿进行逆向重构,获取了准确的河狸门齿三维模型。然后,对河狸门齿的特征结构进行确定、提取与表征,并将提取的仿生耦元用于锤片齿面设计。最后,通过锤片-物料粉碎仿真计算,以物料断裂时长和所受最大应力作为仿生锤片性能的评价指标,基于响应面法构建了仿生锤片的结构参数与性能指标的响应面代理模型,并采用Design-Expert软件对最优结构参数组合进行了求解。物料粉碎仿真结果表明,相较于普通锤片,仿生锤片造成的物料断口较大,与物料正面碰撞时产生的最大应力更大,且物料断裂所需时间更短。物料粉碎实验结果表明,更换仿生锤片后粉碎机的生产效率更高,过粉碎现象有所改善,说明仿生锤片的使役性能优于普通锤片。研究结果可为饲料加工用粉碎机锤片的设计提供参考。


关键词: 河狸门齿,  锤片,  仿生设计,  优化 
Fig.1 Beaver incisors
Fig.2 Point cloud model of beaver skull and beaver incisors
Fig.3 Polygonal model of beaver incisors before and after smooth processing
Fig.4 Three-dimensional model of beaver incisors
Fig.5 Extraction of end tooth profile curve of beaver incisor
Fig.6 Fitting results of end tooth profile curve of beaver incisor
Fig.7 Structure diagram of biomimetic hammer piece
参数量值
密度600 kg/m3
泊松比0.3
弹性模量600 MPa
剪切模量45 MPa
摩擦系数0.3
Table 1 Material parameters of wheat straw
序号锤片结构参数/mm响应指标
齿间距齿高厚度断裂时长/帧最大应力/MPa
11.02.005161137
21.52.004173126
31.01.756161138
41.51.755162148
52.01.756158125
62.01.754184150
72.01.505166141
81.52.006157133
91.51.504166123
101.51.755162148
111.51.506155133
121.01.505164150
132.02.005168154
141.51.755162148
151.01.754166125
161.51.755162148
171.51.755162148
Table 2 Response surface optimization test schemes and results for structure parameters of biomimetic hammer piece
响应指标决定系数R2校正决定系数Radj2信噪比
r10.973 30.931 921.764
r20.938 50.859 510.941
Table 3 Fitting accuracy of response index regression models
参数数值
齿间距1.00
齿高1.52
厚度5.35
Table 4 Optimal structural parameter combination of biomimetic hammer piece
Fig.8 Structure diagram of optimal biomimetic hammer piece
Fig.9 Simulation results of frontal collision between different hammer pieces and materials
Fig.10 Simulation results of side collision between different hammer pieces and materials
Fig.11 Stress on material during collision with different hammer pieces
Fig.12 420 double bucket hammer mill and different hammer pieces
性能指标仿生锤片普通锤片
粉碎时长/s118.00140.00
生产率/(kg·h-1)76.2760.98
Table 5 Crushing performance of different hammer pieces
Fig.13 Particle size distribution results of crushed materials
[1]   曹丽英,李帅波,李春东,等.锤片式饲料粉碎机的研究发展现状[J].饲料工业,2021,42(3):31-36.
CAO L Y, LI S B, LI C D, et al. The research and development status of hammer feed mill[J]. Feed Industry, 2021, 42(3): 31-36.
[2]   徐伟,曹春平,孙宇.锤片式粉碎机锤片结构参数优化设计[J].农机化研究,2021,43(1):27-33. doi:10.3969/j.issn.1003-188X.2021.01.007
XU W, CAO C P, SUN Y. Optimization design of hammer structure parameters of hammer mill[J]. Journal of Agricultural Mechanization Research, 2021, 43(1): 27-33.
doi: 10.3969/j.issn.1003-188X.2021.01.007
[3]   郭亚兵,任连志,路宗尧,等.基于对数螺线方程的秸秆粉碎机锤片设计及应用参数确定[J].甘肃农业科技,2015(5):34-37. doi:10.3969/j.issn.1001-1463.2015.05.010
GUO Y B, REN L Z, LU Z Y, et al. Design and application parameters of straw crusher hummer based on logarithmic spiral equation[J]. Gansu Agricultural Science and Technology, 2015(5): 34-37.
doi: 10.3969/j.issn.1001-1463.2015.05.010
[4]   李更强,郭新荣.锤片式粉碎机锤片的设计与研究[J].农业技术与装备,2012(5):38-40. doi:10.3969/j.issn.1673-887X.2012.03.018
LI G Q, GUO X R. Design and research of hammer blade of hammer mill[J]. Agricultural Technology & Equipment, 2012(5): 38-40.
doi: 10.3969/j.issn.1673-887X.2012.03.018
[5]   陈培军,邓援超.基于TRIZ原理的粉碎机锤片结构问题解决方案[J].湖北工业大学学报,2012,27(2):89-91. doi:10.3969/j.issn.1003-4684.2012.02.024
CHEN P J, DENG Y C. On the sheet structure of hammer mill using TRIZ theory[J]. Journal of Hubei University of Technology, 2012, 27(2): 89-91.
doi: 10.3969/j.issn.1003-4684.2012.02.024
[6]   苏从毅,王永昌,俞信国,等.开刃锤片是提高粉碎机效率的新途径[J].饲料工业,2016,37(1):12-18.
SU C Y, WANG Y C, YU X G, et al. Groove-welding on hammers will enhance crusher's working efficiency[J]. Feed Industry, 2016, 37(1): 12-18.
[7]   谌春炜,付敏.枝桠材粉碎机锤片创新设计[J].森林工程,2012,28(2):47-49,78. doi:10.3969/j.issn.1001-005X.2012.02.012
CHEN C W, FU M. Innovative design of grinder pulverization hammer for branch[J]. Forest Engineering, 2012, 28(2): 47-49, 78.
doi: 10.3969/j.issn.1001-005X.2012.02.012
[8]   YANCEY N, WRIGHT C T, WESTOVER T L. Optimizing hammer mill performance through screen selection and hammer design[J]. Biofuels, 2013, 4(1): 85-94.
[9]   DORODOV P V, KASATKIN V V, PETROV V A, et al. Improving the reliability of the hammer grain crusher by optimal design of the paddle wheel[J]. IOP Conference Series: Earth and Environmental Science, 2022, 981: 042039.
[10]   BOCHAT A, WESOLOWSKI L, ZASTEMPOWSKI M. A comparative study of new and traditional designs of a hammer mill[J]. Transactions of the ASABE, 2015, 58(3): 585-596.
[11]   DICKINSON M H. Bionics: biological insight into mechanical design[J]. PNAS, 1999, 96(25): 14208-14209.
[12]   JUNIOR W K, GUANABARA A S. Methodology for product design based on the study of bionics[J]. Materials & Design, 2005, 26(2): 149-155.
[13]   QUINN S, GAUGHRAN W. Bionics—an inspiration for intelligent manufacturing and engineering[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(6): 616-621.
[14]   童晗笑,权威,任新宇.仿生设计方法在现代产品设计中的应用现状研究[J].艺海,2020(3):70-71.
TONG H X, QUAN W, REN X Y. Research on the application status of bionic design method in modern product design[J]. Yihai, 2020(3): 70-71.
[15]   石峰,郑赟,马用超.气候适应性建筑表皮的仿生设计研究[J].南方建筑,2023(2):22-32. doi:10.3969/j.issn.1000-0232.2023.02.003
SHI F, ZHENG Y, MA Y C. A study of the bionic design of a climate-adaptability building surface[J]. South Architecture, 2023(2): 22-32.
doi: 10.3969/j.issn.1000-0232.2023.02.003
[16]   秦施埼,任泽春,王辰希,等.基于3D打印的木材细胞壁仿生设计[J].复合材料学报,2023,40(2):1085-1095.
QIN S Q, REN Z C, WANG C X, et al. Bionic design of wood cell wall based on 3D printing[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1085-1095.
[17]   RUAN Y Y, KONSTANTINOV A S, SHI G Y, et al. The jumping mechanism of flea beetles (Coleoptera, Chrysomelidae, Alticini), its application to bionics and preliminary design for a robotic jumping leg[J]. ZooKeys, 2020, 915: 87.
[18]   杨立宁,郑东昊,王立新,等.基于蜻蜓翅脉结构的连续碳纤维增强树脂基复合材料仿生设计与增材制造[J].化工进展,2022,41(11):5961-5967.
YANG L N, ZHENG D H, WANG L X, et al. Bionic design and additive manufacturing of continuous carbon fiber reinforced resin matrix composites with dragonfly wing venation structure[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5961-5967.
[19]   陈宇航,陈文家,郭成东,等.半规管积水膨大仿生设计及生物力学特性研究[J].实验技术与管理,2022,39(12):75-79,92.
CHEN Y H, CHEN W J, GUO C D, et al. Research on biomimetic design and biomechanical properties of semicircular canal hydrops swelling[J]. Experimental Technology and Management, 2022, 39(12): 75-79, 92.
[20]   AZOCAR A F, MOONEY L M, DUVAL J F, et al. Design and clinical implementation of an open-source bionic leg[J]. Nature Biomedical Engineering, 2020, 4(10): 941-953.
[21]   FUKUDA T. Cyborg and bionic systems: signposting the future[J]. Cyborg and Bionic Systems, 2020, 2020: 1310389.
[22]   谢峰,沈维蕾,张晔.河狸门牙几何特征的提取及其生物力学性能分析[J].中国机械工程,2011,22(10):1149-1153.
XIE F, SHEN W L, ZHANG Y. Gaining of geometric characteristics for incisor teeth and its analysis of biologic mechanics property[J]. China Mechanical Engineering, 2011, 22(10): 1149-1153.
[1] Xiaoqiang ZHANG,Biwei LU,Jiaqin LIU,Yucheng WU. Topology optimization design and steady-state thermal analysis of fusion reactor divertor[J]. Chin J Eng Design, 2023, 30(5): 601-607.
[2] Baicun WANG,Kailing ZHU,Jinsong BAO,Feng WANG,Haibo XIE,Huayong YANG. Intelligent design and scheduling optimization of painted body storage based on digital pedestal system[J]. Chin J Eng Design, 2023, 30(4): 399-408.
[3] Zhimin GUO,Haishu DAI,Jiang ZHAI,Haocen HONG,Baicun WANG,Haibo XIE,Huayong YANG. Distributed co-simulation and dynamic optimization of axial piston pump based on FMI[J]. Chin J Eng Design, 2023, 30(4): 495-502.
[4] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chin J Eng Design, 2023, 30(4): 503-511.
[5] Yumin HE,Ying HAN,Jing ZHOU. Research on adaptive sliding mode control of tower crane based on improved fruit fly optimization algorithm[J]. Chin J Eng Design, 2023, 30(3): 271-280.
[6] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chin J Eng Design, 2023, 30(3): 334-341.
[7] Xiaofei ZHENG,Zhenhai HUANG,Xiaolong MA,Jianxin WANG,Binrui WANG. Structure optimization and analysis of pole-climbing robot based on SIMP method[J]. Chin J Eng Design, 2023, 30(3): 342-352.
[8] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[9] Junliang FAN,Li XIAO,Yueting LUO,Gang CHEN,Xiaolin QU,Yi TANG,Hengxiang GONG. Optimization design and implementation of atomization assisted CVD cavity[J]. Chin J Eng Design, 2023, 30(2): 182-188.
[10] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chin J Eng Design, 2022, 29(6): 695-704.
[11] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.
[12] Jiang LIU,Zheng-ming XIAO,Long-long ZHANG,Wei-biao LIU. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chin J Eng Design, 2022, 29(6): 739-747.
[13] Wen-hao ZHANG,Chuan-wen BAN,Song-mei LI. Parameter optimization of stirring screw for two-component composite coatings based on discrete element method[J]. Chin J Eng Design, 2022, 29(5): 547-554.
[14] Zhi-qiang HUANG,Zhi-yong WANG,Shan HUANG,Fei-hu QIN,Jin YANG. Heat dissipation analysis and layout optimization of skid mounted module system of shale gas compressor[J]. Chin J Eng Design, 2022, 29(5): 555-563.
[15] Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump[J]. Chin J Eng Design, 2022, 29(4): 401-409.