Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (4): 401-409    DOI: 10.3785/j.issn.1006-754X.2022.00.047
Design Theory and Method     
Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump
Zhi-qiang NING1,2(),Li-xin WEI1,Long QUAN3,Mei-qing ZHAO2,You-shan GAO1()
1.College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Department of Mechanical and Electronic Engineering, Shanxi Institute of Technology, Yangquan 045000, China
3.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Download: HTML     PDF(3570KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of large flow pulsation caused by severe swash plate oscillation in variable displacement asymmetric axial piston pump, the variable resistance moment was regarded as the interference signal, and the anti-interference control algorithm was adopted to improve its variable displacement control performance. Under the action of variable resistance moments with different frequencies, the response characteristics of the swash plate angle of the variable displacement asymmetric axial piston pump under conventional PID (proportion integration differentiation) control, exponential convergence disturbance observer control, nonlinear PID control, active anti-interference control and sliding mode control were compared through the co-simulation of SimulationX and Simulink platforms, so as to obtain the most suitable anti-interference control algorithm. On this basis, a parallel tuning method of control parameters based on the particle swarm optimization (PSO) was proposed. The simulation results showed that, under the action of 10, 20 and 100 Hz interference signals, the swash plate angle fluctuation of the variable displacement asymmetric axial piston pump under the sliding mode control was 1.7%, 2.2% and 23.0% of that under the conventional PID control, which proved that the sliding mode control algorithm could greatly reduce the swash plate oscillation and flow pulsation. The parallel tuning method of control parameters based on the PSO effectively reduced the tracking error of sliding mode control, and the maximum overshoot was reduced by 87.5% after tuning; the parallel tuning method could be separated from the professional simulation software, and its simulation efficiency was improved by more than 10 times compared with SimulationX platform simulation. The research results have certain reference value for the simulation and optimization of conventional hydraulic control systems.



Key wordsvariable displacement asymmetric axial piston pump      variable resistance moment      anti-interference control      particle swarm optimization      parallel tuning     
Received: 26 October 2021      Published: 05 September 2022
CLC:  TH 137  
Corresponding Authors: You-shan GAO     E-mail: aningzhiqiang@126.com;tkgaoyoushan@126.com
Cite this article:

Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump. Chin J Eng Design, 2022, 29(4): 401-409.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.047     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I4/401


变排量非对称轴向柱塞泵抗扰控制及并行整定方法

针对变排量非对称轴向柱塞泵因斜盘振荡严重而引起流量脉动较大的问题,提出将变量阻力矩视作干扰信号,采用抗扰控制算法来提高其变排量控制性能。通过SimulationX和Simulink平台联合仿真,对比在不同频率的变量阻力矩作用时常规PID(proportion integration differentiation,比例积分微分)控制、指数收敛干扰观测器控制、非线性PID控制、自抗扰控制和滑模控制下变排量非对称轴向柱塞泵斜盘角度的响应特性,以得到最合适的抗扰控制算法。在此基础上,提出一种基于粒子群优化(particle swarm optimization, PSO)的控制参数并行整定方法。仿真结果表明,在10,20和100 Hz干扰信号的作用下,滑模控制下变排量非对称轴向柱塞泵斜盘角度的波动量为常规PID控制下的1.7%,2.2%和23.0%,说明滑模控制算法能大幅减小斜盘振荡和流量脉动。基于PSO的控制参数并行整定方法有效地减小了滑模控制的跟踪误差,整定后的最大超调量减小了87.5%;且该并行整定方法可脱离专业仿真软件,与SimulationX平台仿真相比,其仿真效率提高了10倍以上。研究结果对常规液压控制系统的仿真优化有一定参考价值。


关键词: 变排量非对称轴向柱塞泵,  变量阻力矩,  抗扰控制,  粒子群优化,  并行整定 
Fig.1 Structure diagram of variable displacement asymmetric axial piston pump
Fig.2 Control principle of variable displacement asymmetric axial piston pump
Fig.3 Closed-loop control block diagram of control system of variable displacement asymmetric axial piston pump
Fig.4 Physical object of variable displacement asymmetric axial piston pump
主要设备型号额定参数
角位移传感器CP-2UK-R260最大检测角度为±30°
比例伺服阀4WRPEH6C4B12L最大输出流量为12 L

流量压力

传感器

SCLV-PTQ-300

最大检测流量为

300 L/min

Table 1 Models and parameters of main equipment for control test of variable displacement asymmetric axial piston pump
Fig.5 Comparison of target angle and response angle of swash plate under conventional PID control
Fig.6 Control system simulation model of variable displacement asymmetric axial piston pump
Fig.7 Active anti-interference controller and nonlinear PID controller
Fig.8 Comparison of swash plate angle response curves with using different anti-interference control algorithms under the action of different interference signals
控制算法主要控制参数斜盘角度波动量/(°)
10 Hz20 Hz100 Hz
常规PID控制P=2, I=0.9, D=0.011.7001.3000.080
非线性PID控制P1=0.75D1=1.50.7400.5300.226
指数收敛干扰观测器控制V=1 0000.8306.290不统计
自抗扰控制α1=6α2=11α3=60.1100.2690.311
滑模控制c=35,?η=50,?ω=0.0150.0300.0290.019
Table 2 Comparison of swash plate angle fluctuation with using different anti-interference control algorithms under the action of different interference signals
Fig.9 Comparison of B-port flow with using different anti-interference control algorithms under the action of 20 Hz interference signal
Fig.10 Response characteristics of swash plate angle under sliding mode control (without interference)
Fig.11 Overall framework of parallel tuning method of control parameters based on PSO
Fig.12 Human computer interface of parallel tuning program for sliding mode control parameter
Fig.13 Comparison of parallel tuning effect of sliding mode control parameters based on PSO
[1]   权龙.泵控缸电液技术研究现状、存在问题及创新解决方案[J].机械工程学报,2008,44(11):87-92. doi:10.3901/JME.2008.11.087
QUAN Long. Current state, problems and the innovative solution of electro-hydraulic technology of pump controlled cylinder[J]. Journal of Mechanical Engineering, 2008, 44(11): 87-92.
doi: 10.3901/JME.2008.11.087
[2]   ZHANG Xiao-gang, QUAN Long, YANG Yang, et al. Output characteristics of a series three-port axial piston pump[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 498-505. doi:10.3901/cjme.2012.03.498
doi: 10.3901/cjme.2012.03.498
[3]   张晓刚,权龙,杨阳,等.并联型三配流窗口轴向柱塞泵特性理论分析及试验研究[J].机械工程学报,2011,47(14):151-157. doi:10.3901/JME.2011.14.151
ZHANG Xiao-gang, QUAN Long, YANG Yang, et al. Theoretical analysis and experimental research on characteristics of parallel three assignment windows axial piston pump[J]. Journal of Mechanical Engineering, 2011, 47(14): 151-157.
doi: 10.3901/JME.2011.14.151
[4]   HUANG Jia-hai, ZHAO Hu, QUAN Long, et al. Development of an asymmetric axial piston pump for displacement-controlled system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(8): 1418-1430. doi:10.1177/0954406213508385
doi: 10.1177/0954406213508385
[5]   高有山,成杰,黄家海,等.变排量非对称轴向柱塞泵特性仿真分析及试验[J].机械工程学报,2018,54(14):215-224. doi:10.3901/JME.2018.14.215
GAO You-shan, CHENG Jie, HUANG Jia-hai, et al. Simulation analysis and test of variable-displacement asymmetric axial piston pump[J]. Journal of Mechanical Engineering, 2018, 54(14): 215-224.
doi: 10.3901/JME.2018.14.215
[6]   杨迦迪,赵斌,武兵,等.变排量非对称轴向柱塞泵控制性能分析[J].液压与气动,2021(2):42-49. doi:10.11832/j.issn.1000-4858.2021.02.007
YANG Jia-di, ZHAO Bin, WU Bing, et al. Analysis of control performance of variable displacement asymmetric axial piston pump[J]. Chinese Hydraulics & Pneumatics, 2021(2): 42-49.
doi: 10.11832/j.issn.1000-4858.2021.02.007
[7]   王慧,符鹏,王超,等.阀控变量泵系统动态特性及抗干扰特性分析[J].控制工程,2021,28(8):1588-1597. doi:10.14107/j.cnki.kzgc.20190461
WANG Hui, FU Peng, WANG Chao, et al. Analysis of dynamic characteristics and anti-interference characteristics of valve-controlled variable pump system[J]. Control Engineering of China, 2021, 28(8): 1588-1597.
doi: 10.14107/j.cnki.kzgc.20190461
[8]   吴斌,柏艳红,宋亦静,等.泵阀并联驱动液压缸抗干扰控制器设计[J].机床与液压,2021,49(12):158-161,165. doi:10.3969/j.issn.1001-3881.2021.12.032
WU Bin, BAI Yan-hong, SONG Yi-jing, et al. Design of anti-disturbance controller for the hydraulic cylinder driven by pump-valve in parallel[J]. Machine Tool & Hydraulics, 2021, 49(12): 158-161, 165.
doi: 10.3969/j.issn.1001-3881.2021.12.032
[9]   WANG Ai-hong, Zhen-feng LÜ, GAO You-shan, et al. Potential energy recovery scheme with variable displacement asymmetric axial piston pump[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(8): 875-887. doi:10.1177/0959651819885208
doi: 10.1177/0959651819885208
[10]   黄家海,贺伟,郝惠敏,等.变排量非对称轴向柱塞泵控制特性分析[J].农业机械学报,2019,50(3):368-376. doi:10.6041/j.issn.1000-1298.2019.03.042
HUANG Jia-hai, HE Wei, HAO Hui-min, et al. Analysis of control characteristics of variable-displacement asymmetric axial piston pump[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(3): 368-376.
doi: 10.6041/j.issn.1000-1298.2019.03.042
[11]   贺伟,黄家海,郝惠敏,等.变排量非对称轴向柱塞泵动态特性分析[J].液压与气动,2019(10):20-25. doi:10.11832/j.issn.1000-4858.2019.10.003
HE Wei, HUANG Jia-hai, HAO Hui-min, et al. Research on dynamic characteristics of variable-displacement asymmetric axial piston pump[J]. Chinese Hydraulics & Pneumatics, 2019(10): 20-25.
doi: 10.11832/j.issn.1000-4858.2019.10.003
[12]   刘金琨.滑模变结构控制MATLAB仿真[M].3版.北京:清华大学出版社,2015:56-57.
LIU Jin-kun. MATLAB simulation for sliding mode control[M]. 3rd ed. Beijing: Tsinghua University Press, 2015: 56-57.
[13]   韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23. doi:10.3321/j.issn:1001-0920.1998.01.005
HAN Jing-qing. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23.
doi: 10.3321/j.issn:1001-0920.1998.01.005
[14]   武利强,林浩,韩京清.跟踪微分器滤波性能研究[J].系统仿真学报,2004,16(4):651-652,670. doi:10.3969/j.issn.1004-731X.2004.04.012
WU Li-qiang, LIN Hao, HAN Jing-qing. Study of tracking differentiator on filtering[J]. Journal of System Simulation, 2004, 16(4): 651-652, 670.
doi: 10.3969/j.issn.1004-731X.2004.04.012
[15]   刘金琨.先进PID控制MATLAB仿真[M].4版.北京:电子工业出版社,2016:72-90.
LIU Jin-kun. MATLAB simulation for advanced PID control[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2016: 72-90.
[16]   宁志强,卫立新,张瑞,等.基于多核CPU的复杂液压产品快速并行优化方法[J].农业机械学报,2022,53(4):441-449. doi:10.6041/j.issn.1000-1298.2022.04.046
NING Zhi-qiang, WEI Li-xin, ZHANG Rui, et al. Rapid parallel optimization method of complex hydraulic product based on multi-core CPU[J].Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 441-449.
doi: 10.6041/j.issn.1000-1298.2022.04.046
[17]   KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. New York: IEEE, 1995: 1942-1948. doi:10.1109/icnn.1995.488968
doi: 10.1109/icnn.1995.488968
[18]   曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004:35-40.
ZENG Jian-chao, Jing JIE, CUI Zhi-hua. Particle swarm optimization[M]. Beijing: Science Press, 2004: 35-40.
[19]   曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. doi:10.1007/978-3-540-25929-9_96
ZENG Jiao-chao, CUI Zhi-hua. A guaranteed global convergence particle swarm optimizer[J]. Journal of Computer Research and Development, 2004, 41(8): 1333-1338.
doi: 10.1007/978-3-540-25929-9_96
[20]   焦志全,杨雷,杨帼华,等.SimulationX二次开发及其在空气压缩系统中的应用[J].上海工程技术大学学报,2018,32(4):341-345. doi:10.3969/j.issn.1009-444X.2018.04.010
JIAO Zhi-quan, YANG Lei, YANG Guo-hua, et al. Secondary development of SimulationX and its application in air compression system[J]. Journal of Shanghai University of Engineering Science, 2018, 32(4): 341-345.
doi: 10.3969/j.issn.1009-444X.2018.04.010
[1] LIANG Dong, LIANG Zheng-yu, CHANG Bo-yan, QI Yang, XU Zhen-yu. Optimal design of assisting-riveting parallel robot for lifting arm of dobby loom[J]. Chin J Eng Design, 2022, 29(1): 28-40.
[2] XIAO Zhen, HE Yan, LI Yu-feng, WU Peng-cheng, LIU De-gao, DU Jiang. Application of improved MDSMOTE and PSO-SVM in classification prediction of automobile combination instrument[J]. Chin J Eng Design, 2022, 29(1): 20-27.
[3] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chin J Eng Design, 2021, 28(1): 25-32.
[4] SUN Yue-hai, TANG Er-xing. Optimal design of basic parameters of spiral bevel gears[J]. Chin J Eng Design, 2020, 27(5): 616-624.
[5] HU Jun-ping, PENG Yao-ming. Optimization of hinge point position of auger driller luffing mechanism based on PSO algorithm[J]. Chin J Eng Design, 2018, 25(5): 561-566,596.
[6] WANG Li, ZHANG Shi-bing. Research on temperature control system of hot melt glue machine based on CPSO-BP neural network-PID[J]. Chin J Eng Design, 2017, 24(5): 588-594.
[7] ZHAO Dong-bo, YAO Ling-ling, YUAN Kun-kun, LU Jin-gui. Multi-objective optimization for four-bar mechanism of hydraulic support based on particle swarm optimization algorithm[J]. Chin J Eng Design, 2017, 24(4): 433-439.
[8] LIANG Song, ZHANG Yi-min, HU Peng. Optimization design of H-type relieving cam based on PMOPSO method[J]. Chin J Eng Design, 2017, 24(2): 232-240.
[9] WANG Hui, ZHU Long-biao, ZHU Tian-cheng, CHEN Hong-yan, SHAO Xiao-jiang, ZHU Zhi-hui. Research on path planning of parking system based on PSO-genetic hybrid algorithm[J]. Chin J Eng Design, 2016, 23(2): 195-200.
[10] HUANG Xiao-qian, WANG Feng, TAN Yang-hong, WANG Rui, SHAO Jing-ke, CHEN Chun. Coordinated scheduling of electric vehicles and renewable generation considering vehicle-to-grid mode[J]. Chin J Eng Design, 2016, 23(1): 67-73.
[11] . Multi-objective optimization software development and application[J]. Chin J Eng Design, 2015, 22(3): 262-268.
[12] WANG Wen-Zhu, JIN Feng, ZHOU Hai-Bo. Study on the nonlinear influence of hysteresis characteristics of electromagnet in maglev movement[J]. Chin J Eng Design, 2013, 20(3): 212-217.
[13] DU Yi-Xian, WANG Wei, LI Ran, FU Jun-Jian. Research on sensitivity filtering method for structural topology optimization[J]. Chin J Eng Design, 2012, 19(1): 20-24.
[14] QIAN Xue-Yi, WU Shuang. Multi-objective optimization of the non-symmetrical gear agglutinate strength based on elastohydrodynamic lubrication theory[J]. Chin J Eng Design, 2010, 17(6): 426-429.
[15] MAO Jian, CAO Yan-Long. Evaluation method for spatial straightness errors based on particle swarm optimization[J]. Chin J Eng Design, 2006, 13(5): 291-294.