Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (4): 410-418    DOI: 10.3785/j.issn.1006-754X.2022.00.043
Design Theory and Method     
Research on comprehensive quality assessment method for parts
Meng LI(),Zong-jun YIN
Department of Mechatronics Engineering, Anhui Institute of Information Technology, Wuhu 241000, China
Download: HTML     PDF(4670KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The quality assessment of parts is a very important link in flexible intelligent manufacturing. The existing automatic identification device generally adopts the non-artificial contact optical detection system, but due to the complex working environment, many interference factors affect the accuracy of quality detection and assessment for parts. In addition, the continuous operation of industrial site puts forward higher requirements on the running speed of industrial control machine hardware, the environmental adaptability of optical detection system and the prediction accuracy of part quality assessment algorithm. Based on this, a comprehensive quality assessment method for parts based on the machine vision and machine learning was proposed. Firstly, the real-time acquisition and processing of the measured part image was completed with the help of machine vision technology, and then the gray matching algorithm and geometric matching algorithm were used to compare the images and the CAD (computer aided design) machining drawings of parts, so as to solve the geometric feature parameters of gray matching score and the geometric matching score. Then, according to the surface defects of parts (such as scratch, wear, edge material shortage and rust), the surface defect feature parameters of mean and standard deviation of image gray were solved on the basis of image pretreatment (gray, image enhancement, Gaussian noise reduction and binary). Finally, the four-dimensional feature data set of parts was dimensionally reduced by the principal component analysis (PCA), and the K-nearest neighbor (KNN) algorithm was used to train and predict the data set after dimension reduction to complete the comprehensive quality assessment for parts. On this basis, the accuracy, recall rate, specificity and other indicators of the KNN algorithm and other machine learning algorithms were compared to verify its feasibility. The experimental results showed that, the recognition accuracy of optical detection and processing system was more than 96.15% under different lighting conditions; when the camera shutter time was set to 100 μs, the image processing speed of this system reached 45.2 frames/s. The proposed comprehensive quality assessment method for parts has high accuracy and processing speed, which is suitable for comprehensive quality assessment of parts under complex working conditions.



Key wordsquality assessment      geometric matching      gray matching      surface defect feature extraction      machine learning     
Received: 30 August 2021      Published: 05 September 2022
CLC:  TH-39  
Cite this article:

Meng LI,Zong-jun YIN. Research on comprehensive quality assessment method for parts. Chin J Eng Design, 2022, 29(4): 410-418.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.043     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I4/410


一种零件综合质量评定方法研究

零件的质量评定是柔性智能制造中十分重要的环节。现有的自动化识别装置一般采用非人工接触的光学检测系统,但由于工况环境复杂,诸多干扰因素均会影响零件质量检测与评定的准确性。另外,工业现场的连续作业对工控机硬件的运行速度、光学检测系统的环境适应性以及质量评定算法的预测准确性都提出了更高的要求。基于此,提出一种基于机器视觉与机器学习的零件综合质量评定方法。首先,借助机器视觉技术完成被测零件图像的实时采集与处理,并利用灰度匹配算法与几何匹配算法对零件的图像与CAD(computer aided design,计算机辅助设计)机械加工图进行比较,求解得到灰度匹配分数与几何匹配分数这2个几何特征参数。然后,针对零件表面的缺陷(如划伤、磨损、边缘缺料及锈蚀等),在图像预处理(灰度化、图像增强、高斯降噪和二值化)的基础上,求解得到图像灰度的均值和标准差这2个表面缺陷特征参数。最后,借助主成分分析(principal component analysis, PCA)对零件的四维特征数据集进行降维处理,并利用K最近邻(K-nearest neighbor, KNN)算法对降维后的数据集进行训练和预测,完成零件综合质量评定;在此基础上,比较KNN算法与其他机器学习算法的准确率、召回率和特异度等指标,以验证其可行性。实验结果表明,所搭建的光学检测与处理系统在不同光源条件下的识别准确率达到96.15%以上;当相机的快门时间设定为100 μs时,该系统的图像处理速度达到45.2 帧/s。所提出的零件综合质量评定方法具有较高的准确率与处理速度,适用于复杂工况下零件的综合质量评定。


关键词: 质量评定,  几何匹配,  灰度匹配,  表面缺陷特征提取,  机器学习 
Fig.1 Overall framework of comprehensive quality assessment method for parts
Fig.2 Diagram of gray gradient direction angle of edge point
Fig.3 Optical detection and processing system
Fig.4 CAD machining drawing of part
Fig.5 Template matching results of part images
Fig.6 Image preprocessing results of parts with different surface defects
Fig.7 Four-dimensional feature data set of part and its comprehensive quality assessment results (part)
Fig.8 Comprehensive quality classification results of part based on PCA and KNN algorithm
Fig.9 Comparison of part comprehensive quality classification results based on different algorithms (geometric matching score‒gray matching score)
Fig.10 Comparison of part comprehensive quality classification results based on different algorithms (gray matching score‒gray standard difference)
Fig.11 Comprehensive quality classification results of parts based on decision tree
最小样本叶取值准确率/%
396.37
893.76
2087.43
Table 1 Comparison of accuracy of part comprehensive quality classification based on decision tree
指标PCA+KNN算法K均值聚类算法异常点检测算法决策树
准确率94.29~97.4193.3192.7787.43~96.37
召回率92.53~95.2393.7893.6291.98~95.28
特异度92.12~95.9292.7594.3491.43~94.87
精准率93.45~95.7694.1793.4292.33~94.61
F1分数92.34~94.2292.8393.7393.37~95.05
Table 2 Comparison of part comprehensive quality classification results based on different algorithms
光源照度/lx快门时间/μs处理速度/(帧/s)准确率/%
50010045.297.41
30015041.696.83
20020038.496.15
Table 3 Accuracy of part comprehensive quality classification based on PCA and KNN algorithm under different lighting conditions
[1]   LIU Q Z, SUNG A H, CHEN Z X, et al. Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images[J]. Pattern Recognition, 2008, 41(1): 56-66. doi:10.1016/j.patcog.2007.06.005
doi: 10.1016/j.patcog.2007.06.005
[2]   JIA Xi-yue, CAO Yi-ning, David O’CONNOR, et al. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field[J]. Environmental Pollution, 2021, 270: 116281. doi:10.1016/j.envpol.2020.116281
doi: 10.1016/j.envpol.2020.116281
[3]   WEI Wei, DING Lie-yun, LUO Han-bin, et al. Automated bughole detection and quality performance assessment of concrete using image processing and deep convolutional neural networks[J]. Construction and Building Materials, 2021, 281: 122576. doi:10.1016/j.conbuildmat.2021.122576
doi: 10.1016/j.conbuildmat.2021.122576
[4]   蓝金辉,王迪,申小盼.卷积神经网络在视觉图像检测的研究进展[J].仪器仪表学报,2020,41(4):167-182. doi:10.19650/j.cnki.cjsi.J2006003
LAN Jin-hui, WANG Di, SHEN Xiao-pan. Research progress on visual image detection based on convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 167-182.
doi: 10.19650/j.cnki.cjsi.J2006003
[5]   SAHA Dhritiman, MANICKAVASAGAN Annamalai. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: a review[J]. Current Research in Food Science, 2021, 4: 28-44. doi:10.1016/j.crfs.2021.01.002
doi: 10.1016/j.crfs.2021.01.002
[6]   AYESHA, QURESHI M B, AFZAAL M, et al. Machine learning-based EEG signals classification model for epileptic seizure detection[J]. Multimedia Tools and Applications, 2021, 80(12): 17849-17877. doi:10.1007/s11042-021-10597-6
doi: 10.1007/s11042-021-10597-6
[7]   赵勇,李怀宇.基于通用距离测量的机器学习方法用于图像分类和聚类[J].电子测量技术,2017,40(9):136-140. doi:10.3969/j.issn.1002-7300.2017.09.026
ZHAO Yong, LI Hai-yu. Machine learning methods based on universal distance measurement for image classification and clustering[J]. Electronic Measurement Technology, 2017, 40(9): 136-140.
doi: 10.3969/j.issn.1002-7300.2017.09.026
[8]   吴春晓,行鸿彦,张漪俊.基于BP神经网络的地温推演模型[J].电子测量与仪器学报,2017,31(10):1561-1567.
WU Chun-xiao, HANG Hong-yan, ZHANG Yi-jun. Ground temperature deduction model based on BP neural network[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(10): 1561-1567.
[9]   陶显,侯伟,徐德.基于深度学习的表面缺陷检测方法综述[J].自动化学报,2021,47(5):1017-1034. doi:10.16383/j.aas.c190811
TAO Xian, HOU Wei, XU De. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034.
doi: 10.16383/j.aas.c190811
[10]   杨明莉,范玉刚,李宝芸.基于LDA和ELM的高光谱图像降维与分类方法研究[J].电子测量与仪器学报,2020,34(5):190-196. doi:10.13382/j.jemi.B1902756
YANG Ming-li, FAN Yu-gang, LI Bao-yun. Research on dimensionality reduction and classification of hyperspectral images based on LDA and ELM[J]. Journal of Electronic Measurement and Instrument, 2020, 34(5): 190-196.
doi: 10.13382/j.jemi.B1902756
[11]   SUN Wei-chen, ZHANG Zhi-jing, SHI Ling-ling, et al. Small sample parts recognition and localization from unfocused images in precision assembly systems using relative entropy[J]. Precision Engineering, 2021, 68: 206-217. doi:10.1016/j.precisioneng.2020.12.015
doi: 10.1016/j.precisioneng.2020.12.015
[12]   UCEV A, MINALINEE T T. Machine parts recognitionand defect detection in automated assembly systems using computer vision techniques[J]. Revista Técnica De La Facultad De Ingeniería Universidad Del Zulia, 2016, 39(1): 71-80.
[13]   BOHLOOL M, TAGHANAKI S R. Cost-efficient automated visual inspection system for small manufacturing industries based on SIFT[C]//23rd International Conference Image and Vision Computing, Christchurch, New Zealand, Nov. 26-28, 2008.
[14]   PICCININI P, PRATI A, CUCCHIARA R. Real-time object detection and localization with SIFT-based clustering[J]. Image and Vision Computing, 2012, 30(8): 573-587. doi:10.1016/j.imavis.2012.06.004
doi: 10.1016/j.imavis.2012.06.004
[15]   RASHAD M Z, ELDESOUKY B S, KHAWASIK M S. Plants images classification based on textural features using combined classifier[J]. International Journal of Computer Science and Information Technology, 2011, 3(4): 93-100. doi:10.5121/ijcsit.2011.3407
doi: 10.5121/ijcsit.2011.3407
[16]   ALAMOUDI S, HONG X, WEI H. Plant leaf recognitionusing texture features and semi-supervised spherical k-means clustering[C]//International Joint Conference on Neural Networks (IJCNN), Glasgow, Jul. 19-24, 2020. doi:10.1109/ijcnn48605.2020.9207386
doi: 10.1109/ijcnn48605.2020.9207386
[17]   刘丽,赵凌君,郭承玉,等.图像纹理分类方法研究进展和展望[J].自动化学报,2018,44(4):584-607. doi:10.16383/j.aas.2018.c160452
LIU Li, ZHAO Ling-jun, GUO Cheng-yu, et al. Texture classification: state-of-the-art methods and prospects[J]. Acta Automatica Sinica, 2018, 44(4): 584-607.
doi: 10.16383/j.aas.2018.c160452
[18]   李晖,吴佳宁,苑玮琦,等.基于视觉显著性的木板实时分类方法研究[J].仪器仪表学报,2018,39(12):237-244. doi:10.19650/j.cnki.cjsi.J1803700
LI Hui, WU Jia-ning, YUAN Wei-qi, et al. Real-time classification of wood based on visual significance[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 237-244.
doi: 10.19650/j.cnki.cjsi.J1803700
[19]   YANG Cheng-zhuan, YU Qian. Multiscale fourier descriptor based on triangular features for shape retrieval[J]. Signal Processing Image Communication, 2019, 71: 110-119. doi:10.1016/j.image.2018.11.004
doi: 10.1016/j.image.2018.11.004
[20]   LEE S H, CHAN C S, REMAGNINO P. Multi-organ plant classification based on convolutional and recurrent neural networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4287-4301. doi:10.1109/tip.2018.2836321
doi: 10.1109/tip.2018.2836321
[21]   杨高科.图像处理、分析与机器视觉[M].北京:清华大学出版社,2018:472-485.
YANG Gao-ke. Image processing, analysis, and machine vision[M]. Beijing: Tsinghua University Press, 2018: 472-485.
[22]   周志华.机器学习[M].北京:清华大学出版社,2018:229-232.
ZHOU Zhi-hua. Machine learning[M]. Beijing: Tsinghua University Press, 2018: 229-232.
No related articles found!