Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (2): 195-200    DOI: 10.3785/j.issn.1006-754X.2016.02.014
    
Research on path planning of parking system based on PSO-genetic hybrid algorithm
WANG Hui1, ZHU Long-biao1, ZHU Tian-cheng2, CHEN Hong-yan1, SHAO Xiao-jiang1, ZHU Zhi-hui3
1. School of Mechanical Engineering, Nantong University, Nantong 226019, China;
2. Jiangsu Branch, China United Network Communications Group Co., Ltd., Nanjing 210024, China;
3. Jiangsu Jinguan Solid Parking System Engineering Co., Ltd., Nantong 226003, China
Download: HTML     PDF(1255KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Aiming at path planning problem of AGV accessing cars, the dynamic adaptive hybrid algorithm was proposed by combining particle swarm optimization (PSO) with genetic algorithm (GA). Based on the standard PSO and GA, inertia weight coefficient, learning factor and the formula of crossover and mutation probability were optimized and improved with the dynamic adaptive adjustment strategy. In the initial stage of algorithm evolution, the dynamic linkage relation built between inertia weight coefficient and learning factor were utilized to deal with real-time updates of particle's velocity and position. In the later stage of evolution, in order to strengthen global search ability of hybrid algorithm and improve evolution speed and convergence precision of the algorithm, crossover and mutation operators of adaptive genetic algorithm (AGA) were introduced. Finally, MATLAB was used to verify the feasibility and effectiveness of hybrid algorithm. The simulation results showed the global search ability and convergence performance of hybrid algorithm were optimal by being compared with tabu search algorithm (TSA), ant colony algorithm (ACO) and GA. The conclusion indicates that the hybrid algorithm is feasible and effective.

Key wordsparticle swarm optimization      genetic algorithm      parking system      AGV      path planning     
Received: 16 November 2015      Published: 28 April 2016
CLC:  TP301.6  
Cite this article:

WANG Hui, ZHU Long-biao, ZHU Tian-cheng, CHEN Hong-yan, SHAO Xiao-jiang, ZHU Zhi-hui. Research on path planning of parking system based on PSO-genetic hybrid algorithm. Chinese Journal of Engineering Design, 2016, 23(2): 195-200.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.02.014     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I2/195


基于粒子群遗传算法的泊车系统路径规划研究

针对智能停车库自动导引运输车(automated guided vehicle, AGV)存取车路径规划问题,提出了一种基于粒子群和遗传算法的动态自适应混合算法.在标准粒子群算法和遗传算法的基础上,通过引入动态自适应调整策略分别对惯性权重系数、学习因子以及交叉变异概率公式进行了优化.在进化初期,通过在惯性权重系数和学习因子之间建立动态联动关系来实现对粒子速度和位置的实时有效更新;在进化后期,通过引入自适应遗传算法的交叉、变异操作来增强混合算法的全局搜索能力,提高算法的进化速度和收敛精度.为验证混合算法的可行性和有效性,选用MATLAB软件对其进行仿真测试.仿真测试结果显示,与禁忌搜索算法、蚁群算法以及遗传算法相比,混合算法表现出较强的全局搜索能力和较好的收敛性能,表明混合算法可行和有效.

关键词: 粒子群算法,  遗传算法,  泊车系统,  AGV,  路径规划 
[1] CHARLES E B,BRIAN G P,CHRISTIAN A Y,et al.Automated automotive vehicle parking/storage system:US12855017[P].2014-05-27.

[2] BASU S.Tabu search implementation on traveling salesman problem and its variations:a literature survey[J].American Journal of Operations Research,2012,2(2):163-173.

[3] WANG Yong,TIAN De,LI Yu-hua.An improved simulated annealing algorithm for travelling salesman problem[J].International Journal of Online Engineering,2013,9(4):28-32.

[4] 樊明,郭艺,贠超,等.基于自适应混合算法的智能存取系统动态路径规划[J].系统仿真学报,2013,25(7):1543-1548. FAN Ming,GUO Yi,YUN Chao,et al.Adaptive hybrid algorithm for dynamic path planning problem of intelligent access system[J].Journal of System Simulation,2013,25(7):1543-1548.

[5] IMEN C,ANIS K,SAHAR T,et al.Smartpath:an efficient hybrid ACO-GA algorithm for solving the global path planning problem of mobile robots[J].International Journal of Advanced Robotic Systems,2014,11(1):1-15.

[6] 王波,张晓磊.基于粒子群遗传算法的云计算任务调度研究[J].计算机工程与应用,2015,51(6):84-88. WANG Bo,ZHANG Xiao-lei.Task scheduling algorithm based on particle swarm optimization genetic algorithms in cloud computing environment[J].Computer Engineering and Applications,2015,51(6):84-88.

[7] 乔俊飞,王超,刘昌芬.基于改进的自适应粒子群算法的给水管网优化设计[J].北京工业大学学报,2014,40(7):1035-1040. QIAO Jun-fei,WANG Chao,LIU Chang-fen.Optimal design of a water supply system based on improved self-adaptive particle swarm algorithm[J].Journal of Beijing University of Technology,2014,40(7):1035-1040.

[8] 雷伟军,程筱胜,戴宁,等.基于改进遗传算法的多模型加工路径规划[J].机械工程学报,2014,50(11):153-161. LEI Wei-jun,CHENG Xiao-sheng,DAI Ning,et al.Multi-model machining path planning based on improved genetic algorithm[J].Journal of Mechanical Engineering,2014,50(11):153-161.

[9] 徐翔,梁瑞仕,杨会志.基于改进遗传算法的智能体路径规划仿真[J].计算机仿真,2014,31(6):357-361. XU Xiang,LIANG Rui-shi,YANG Hui-zhi.Path planning for agent based on improved genetic algorithm[J].Computer Simulation,2014,31(6):357-361.

[10] ADITI K,MAITI M K,MAITI M.Profit maximization of TSP through a hybrid algorithm[J].Computers and Industrial Engineering,2015,88:229-236.

[11] PINKEY C,KUSUM D,MILLIE P.Novel inertia weight strategies for particle swarm optimization[J].Memetic Computing,2013,5(3):229-251.

[12] SHI Y,EBERHART R.Monitoring of particle swarm optimization[J].Frontiers of Computer Science in China,2009,3(1):31-37.

[13] AHMAD N,MEHDI E M,REZA S.A novel particle swarm optimization algorithm with adaptive inertia weight[J].Applied Soft Computing Journal,2011,11(4):3658-3670.

[14] 马国庆,李瑞峰,刘丽.学习因子和时间因子随权重调整的粒子群算法[J].计算机应用研究,2014,31(11):3291-3294. MA Guo-qing,LI Rui-feng,LIU Li.Particle swarm optimization algorithm of learning factors and time factor adjusting to weights[J].Application Research of Computers,2014,31(11):3291-3294.

[15] 赵远东,方正华.带有权重函数学习因子的粒子群算法[J].计算机应用,2013,33(8):2265-2268. ZHAO Yuan-dong,FANG Zheng-hua.Particle swarm optimization algorithm with weight function's learning factor[J].Journal of Computer Applications,2013,33(8):2265-2268.

[16] SRINIVAS M,PATNAIK L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Transactions on Systems,Man and Cybernetics,1994,24(4):656-667.

[17] 任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. RRN Zi-wu,SAN Ye.Improved adaptive genetic algorithm and its application research in parameter identification[J].Journal of System Simulation,2006,18(1):41-43.
[1] Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump[J]. Chinese Journal of Engineering Design, 2022, 29(4): 401-409.
[2] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[3] LIANG Dong, LIANG Zheng-yu, CHANG Bo-yan, QI Yang, XU Zhen-yu. Optimal design of assisting-riveting parallel robot for lifting arm of dobby loom[J]. Chinese Journal of Engineering Design, 2022, 29(1): 28-40.
[4] XIAO Zhen, HE Yan, LI Yu-feng, WU Peng-cheng, LIU De-gao, DU Jiang. Application of improved MDSMOTE and PSO-SVM in classification prediction of automobile combination instrument[J]. Chinese Journal of Engineering Design, 2022, 29(1): 20-27.
[5] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[6] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[7] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chinese Journal of Engineering Design, 2021, 28(1): 25-32.
[8] SUN Yue-hai, TANG Er-xing. Optimal design of basic parameters of spiral bevel gears[J]. Chinese Journal of Engineering Design, 2020, 27(5): 616-624.
[9] TANG Dong-lin, LONG Zai-yong, TANG Yan-jin, PAN Feng, YOU Chuan-kun. Complete coverage path planning of oil tank detection wall climbing robot[J]. Chinese Journal of Engineering Design, 2020, 27(2): 162-171.
[10] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[11] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[12] ZHOU Jie-hua, DAI Ji-yang, ZHOU Ji-qiang, ZHANG Xiao-yong. Research on path planning and trajectory tracking control of mowing robot for large airport lawn[J]. Chinese Journal of Engineering Design, 2019, 26(2): 146-152.
[13] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[14] HU Jun-ping, PENG Yao-ming. Optimization of hinge point position of auger driller luffing mechanism based on PSO algorithm[J]. Chinese Journal of Engineering Design, 2018, 25(5): 561-566,596.
[15] TANG Dong-lin, YUAN Bo, HU Lin, LI Mao-yang, WEI Zi-bing. Complete coverage path planning method for oil tank inspection wall climbing robot[J]. Chinese Journal of Engineering Design, 2018, 25(3): 253-261.