Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (6): 592-599    DOI: 10.3785/j.issn.1006-754X.2016.06.011
    
Swash plate moment property modeling and analysis of balanced two-ring axial piston pump
DENG Hai-shun1,2, HUANG Kun1,3, HUANG Ran1, WANG Chuan-li1, DENG Yue-fei1
1. College of Mechanical Engineering, Auhui University of Science and Technology, Huainan 232001, China;
2. Xuzhou Aobo Mechanical Technology Co., Ltd., Xuzhou 221100, China;
3. Hengli Eletek Co., Ltd., Hefei 230088, China
Download: HTML     PDF(1020KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to obtain matching relation between swash plate and piston component in the balanced two-ring axial piston pump, the force condition of swash plate was analyzed theoretically. The simulation model of balanced two-ring axial piston pump and swash plate was established based on its multi inclined slope characteristic. And the influence of the parameters such as the piston distribution circle radius, the piston diameter and the inclined slope inclination angle on the swash plate moment was also established. The results showed that the increase in inner piston distribution circle radius would reduce the swash plate total moment, while the case of outer ring was on the contrary and the influence of outer piston distribution circle radius on the total moment was far greater than that in the inner ring, so the reduction of the distribution circle radius difference between the inner and outer rings was advantageous to the reduction of the moment, at the same time, the increase in the inner piston diameter would also make the total moment reduced and that of the outer ring was also on the contrary, it's better to make the inner and outer piston diameters close to each other. The total force's trace of the swash plate of balanced two-ring axial piston pump changed along the "triangle". The characteristics of this trace were less turning point, low directional mutation and gentle force change, which made the swash plate have better stress situation, more stable operation and less vibration. The research results provide the guidance for the optimal design of the balanced two-ring axial piston pump's swash plate.



Key wordsbalanced two-ring axial piston pump      swash plate      moment      modeling     
Received: 31 May 2016      Published: 28 December 2016
CLC:  TH137  
Cite this article:

DENG Hai-shun, HUANG Kun, HUANG Ran, WANG Chuan-li, DENG Yue-fei. Swash plate moment property modeling and analysis of balanced two-ring axial piston pump. Chinese Journal of Engineering Design, 2016, 23(6): 592-599.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.06.011     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I6/592


平衡式两排轴向柱塞泵斜盘力矩特性建模与分析

为确定平衡式两排轴向柱塞泵斜盘与柱塞组件间的匹配关系,理论分析了其斜盘斜面的受力状况,建立了平衡式两排轴向柱塞泵及其斜盘的仿真模型,得出了柱塞分布圆半径、柱塞直径、斜盘斜面倾角等对斜盘力矩的影响.结果表明:内排柱塞分布圆半径增大,斜盘合力矩减小,外排柱塞分布圆半径增大,斜盘合力矩增大,且外排柱塞分布圆半径对合力矩的影响远大于内排柱塞分布圆半径,减小内、外排柱塞分布圆半径差有利于减小合力矩;内排柱塞直径增大,合力矩减小,外排柱塞直径增大,合力矩增大,应尽量使内、外排柱塞直径尺寸接近.平衡式两排轴向柱塞泵斜盘合力轨迹呈类“三角形”,转折点少,方向突变性低,合力变化平缓,使得斜盘受力良好,运行更平稳,振动更小.研究结果可为平衡式双排柱塞泵斜盘的优化设计提供理论指导.


关键词: 平衡式两排轴向柱塞泵,  斜盘,  力矩,  建模 

[1] KIM J H, JEON C S, HONG Y S. Constant pressure control of a swash plate type axial piston pump by varying both volumetric displacement and shaft speed[J]. International Journal of Precision Engineering & Manufacturing, 2015, 16(11):2395-2401.
[2] 杨华勇,宋月超,徐兵. 复杂工况下柱塞泵流量脉动并行仿真与试验研究[J].中国科学(技术科学),2012,42(12):1463-1471. YANG Hua-yong, SONG Yue-chao, XU Bing. Parallel simulation and experimental research on flow ripple of axial piston pump under complicated conditions[J]. Scientia Sinica (Technologica), 2012, 42(12):1463-1471.
[3] OUYANG Xiao-ping, FANG Xu, YANG Hua-yong. An investigation into the swash plate vibration and pressure pulsation of piston pumps based on full fluid-structure interactions[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2016,17(3):202-214.
[4] 胡敏,徐兵,周万仁,等.轴向柱塞泵柱塞滑靴组件动力学特性建模与分析[J]. 农业机械学报,2016,47(3):373-341. HU Min, XU Bing, ZHOU Wan-ren, et al. Modeling and analysis of dynamics characteristics of piston-slipper group of axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3):373-341.
[5] 那成烈,李书泽,那焱青. 轴向柱塞泵配流盘对缸体液压作用力矩的稳定性分析[J].甘肃工业大学学报,2001,27(3):41-43. NA Cheng-lie, LI Shu-ze, NA Yan-qing. Stability analysis of hydraulic moment on cylinder of axial piston pump caused by valve plate[J]. Journal of Gansu University of Technology, 2001, 27(3):41-43.
[6] 丛凤杰,仲梁维. 旋转斜盘实现变量的轴向柱塞泵研究[J]. 包装工程,2014,35(19):82-87. CONG Feng-jie, ZHONG Liang-wei. Variable displacement of axial piston pump by rotating its swash-plate[J]. Packaging Engineering, 2014, 35(19):82-87.
[7] 石金艳,谢永超. 斜盘倾角对柱塞运动影响的研究与分析[J].流体传动与控制,2010,42(5):30-32. SHI Jin-yan, XIE Yong-chao. Study on the influence of the angle of slanting plate on piston movement[J]. Fluid Power Transmission & Control, 2010, 42(5):30-32.
[8] 刘健,罗斌,姜伟. 斜盘支承反力对轴向柱塞泵结构及参数的影响[J]. 科技通报,2006,22(2):206-207. LIU Jian, LUO Bin, JIANG Wei. Effects of slanting plate force on the structural parameters of axial piston pump[J]. Bulletin of Science & Technology, 2006, 22(2):206-207.
[9] 朱钰.轴向变量柱塞泵斜盘力矩的研究[J].船海工程,2008,37(6):74-76. ZHU Yu. Research on the swash plate torque of axial variable piston pump[J]. Ship & Ocean Engineering, 2008, 37(6):74-76.
[10] 徐兵,宋月超,杨华勇. 柱塞泵斜盘交错角降噪结构优化[J]. 浙江大学学报(工学版),2013,47(6):1043-1050. XU Bing, SONG Yue-chao, YANG Hua-yong. Optimization of swash-plate cross angle noise-reduction structure for swash-plate-type axial piston pump[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(6):1043-1050.
[11] ZEIGER G, AKERS A. Torque on the swash plate of an axial piston pump[J]. Journal of Dynamic Systems Measurement & Control, 1985, 107(3):220-226.
[12] 邓海顺,王传礼,张立祥.平衡式两排轴向柱塞泵流量脉动的研究[J]. 农业机械学报,2014,45(5):305-309. DENG Hai-shun, WANG Chuan-li, ZHANG Li-xiang. Study on flow ripple of balanced two-ring axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):305-309.
[13] 邓海顺,黄坤,王传礼,等.平衡式两排轴向柱塞泵缸体倾覆力矩[J]. 吉林大学学报(工学版),2015,61(2):723-737. DENG Hai-shun, HUANG Kun, WANG Chuan-li, et al. Overturning moment of cylinder of balanced two-ring axial piston pump[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 61(2):723-737.
[14] MANRING N D. The control and containment forces on the swash plate of an axial piston pump utilizing a secondary swash-plate angle[C]//Proceedings of the 2002 American Control Conference. Anchorage:IEEE, 2002:4837-4842.
[15] 李壮云. 液压元件与系统[M]. 3版. 北京:机械工业出版社,2011:82-84. LI Zhuang-yun. Hydraulic components and systems[M]. 3th ed. Beijing:Mechanical Industry Press, 2011:82-84.
[16] ZHANG X, CHO J, NAIR S S, et al. Damping on the swash plate of an axial-piston pump[C]//Proceedings of the 2000 American Control Conference. Chicago:IEEE, 2000:3590-3594.

[1] Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump[J]. Chinese Journal of Engineering Design, 2022, 29(4): 401-409.
[2] Fu-qiang ZHAO,Te DU,Bao-yu CHANG,Zhi-gang NIU. Dynamics analysis and experimental research on leg lifting condition of limb-leg crawler foot mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(4): 474-483.
[3] Ke-jun LI,Min-ya DENG,Wen-jing HUANG,Yu ZHANG,Jia-wang ZENG,Miao-lin CHEN. Study on working characteristics of swing system of concrete wet spraying machine[J]. Chinese Journal of Engineering Design, 2022, 29(4): 519-526.
[4] Yong-de ZHANG,Qing WANG,Wei-feng YANG. Wing docking tolerance allocation based on key measurement features[J]. Chinese Journal of Engineering Design, 2022, 29(3): 300-308.
[5] Wei GAO,Wei ZHANG,Hai-tao GU,Ling-shuai MENG,Hao GAO,Zhi-chao ZHAO. Analysis of motion characteristics of large deep-sea AUV unpowered spiral diving[J]. Chinese Journal of Engineering Design, 2022, 29(3): 370-383.
[6] WANG Hong-shen, LIU Min, QIANG Hui-ying. Three-dimensional model classification and retrieval algorithm based on polar radius surface moment and HMM[J]. Chinese Journal of Engineering Design, 2021, 28(4): 407-414.
[7] CUI Ya-jun, GUO An-fu, JIANG Tao, LI Jun-jie, LI Yong-xin. Structural design and analysis of mobile emergency water purification trolly with continuous water intake[J]. Chinese Journal of Engineering Design, 2021, 28(1): 105-111.
[8] LI Chuan-zhen, LI Guo-long, TAO Xiao-hui, PANG Yuan. Optimization of temperature measurement points for feed system of vertical machining center based on improved sequential clustering method[J]. Chinese Journal of Engineering Design, 2020, 27(2): 223-231.
[9] NIE Ming-zheng, FAN Qin, WANG Xiong, LI Zhi-cun. Study on the effect of heating baseplate style on warpage deformation in FDM technology[J]. Chinese Journal of Engineering Design, 2018, 25(4): 420-425,440.
[10] LI Song-mei, LI Shuai-shuai, CHANG De-gong. Additional bending moment analysis of the trigeminal universal joint installed by single or twin radial bearing[J]. Chinese Journal of Engineering Design, 2017, 24(2): 182-186.
[11] WU Qin, LÜ Jian, PAN Wei-jie, LIU Dan. Research on cultural and creative product design method based on case[J]. Chinese Journal of Engineering Design, 2017, 24(2): 121-133.
[12] JIN Ying-Lei, PAN Wei-jie, LÜ Jian, LIU Zheng-hong. Study on cultural and creative product design method based on extension semantics analysis[J]. Chinese Journal of Engineering Design, 2017, 24(1): 27-33.
[13] LIU Jiang, CHEN Peng, LI Dao-fei. Vehicle stability control based on phase-plane method[J]. Chinese Journal of Engineering Design, 2016, 23(5): 409-416.
[14] PENG Tian-hao, WANG Guang-yao, ZHANG Yi-long, HUANG Peng, ZHONG Wei-cai. Design of shearer simulated spiral drum based on similarity theory[J]. Chinese Journal of Engineering Design, 2016, 23(4): 322-326.
[15] YANG Shu-yi, LI Huan, CHEN Cang, SHI Lin. Dynamic characteristic analysis for the whole system of impact pile driver-pile-soil[J]. Chinese Journal of Engineering Design, 2016, 23(2): 166-171.