Mechanical Bionic Design |
|
|
|
|
Biomimetic design of hammer pieces for hammer mill based on beaver incisors |
Jindong WANG( ),Yuhong XIE( ),Yi CHEN,Zhanyang WU |
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract In order to improve the crushing efficiency and reduce energy consumption of the hammer mill, a new type of biomimetic hammer piece was designed with beaver incisors as biomimetic prototype. Firstly, the reverse reconstruction for beaver incisors was carried out to obtain an accurate three-dimensional model of beaver incisors. Then, the characteristic structure of beaver incisors was determined, extracted and characterized, and the obtained biomimetic coupling element was used for the tooth surface design of hammer pieces. Finally, through the hammer piece?material crushing simulation calculation, taking the fracture duration and maximum stress of material as the evaluation indicators of the biomimetic hammer piece performance, the response surface surrogate model of the structural parameters and performance indicators of the biomimetic hammer piece was constructed by the response surface method, and the optimal combination of structural parameters was solved by the Design-Expert software. The simulation results of material crushing showed that compared to ordinary hammer pieces, biomimetic hammer pieces caused larger material fractures, generated greater maximum stress when colliding with the material head-on, and required shorter time for material fracture. The experimental results of material crushing showed that after replacing the biomimetic hammer pieces, the production efficiency of the mill was higher and over crushing was improved, indicating that the service performance of the biomimetic hammer piece was better than that of the ordinary hammer piece. The research results can provide reference for the design of hammer pieces of mills for feed processing.
|
Received: 29 September 2022
Published: 04 September 2023
|
|
Corresponding Authors:
Yuhong XIE
E-mail: wangjindong@swjtu.edu.cn;2331516202@qq.com
|
基于河狸门齿的锤片式粉碎机锤片仿生设计
为提高锤片式粉碎机的粉碎效率并降低其能耗,以河狸门齿为仿生原型,设计了一种新型仿生锤片。首先,对河狸门齿进行逆向重构,获取了准确的河狸门齿三维模型。然后,对河狸门齿的特征结构进行确定、提取与表征,并将提取的仿生耦元用于锤片齿面设计。最后,通过锤片-物料粉碎仿真计算,以物料断裂时长和所受最大应力作为仿生锤片性能的评价指标,基于响应面法构建了仿生锤片的结构参数与性能指标的响应面代理模型,并采用Design-Expert软件对最优结构参数组合进行了求解。物料粉碎仿真结果表明,相较于普通锤片,仿生锤片造成的物料断口较大,与物料正面碰撞时产生的最大应力更大,且物料断裂所需时间更短。物料粉碎实验结果表明,更换仿生锤片后粉碎机的生产效率更高,过粉碎现象有所改善,说明仿生锤片的使役性能优于普通锤片。研究结果可为饲料加工用粉碎机锤片的设计提供参考。
关键词:
河狸门齿,
锤片,
仿生设计,
优化
|
|
[1] |
曹丽英,李帅波,李春东,等.锤片式饲料粉碎机的研究发展现状[J].饲料工业,2021,42(3):31-36. CAO L Y, LI S B, LI C D, et al. The research and development status of hammer feed mill[J]. Feed Industry, 2021, 42(3): 31-36.
|
|
|
[2] |
徐伟,曹春平,孙宇.锤片式粉碎机锤片结构参数优化设计[J].农机化研究,2021,43(1):27-33. doi:10.3969/j.issn.1003-188X.2021.01.007 XU W, CAO C P, SUN Y. Optimization design of hammer structure parameters of hammer mill[J]. Journal of Agricultural Mechanization Research, 2021, 43(1): 27-33.
doi: 10.3969/j.issn.1003-188X.2021.01.007
|
|
|
[3] |
郭亚兵,任连志,路宗尧,等.基于对数螺线方程的秸秆粉碎机锤片设计及应用参数确定[J].甘肃农业科技,2015(5):34-37. doi:10.3969/j.issn.1001-1463.2015.05.010 GUO Y B, REN L Z, LU Z Y, et al. Design and application parameters of straw crusher hummer based on logarithmic spiral equation[J]. Gansu Agricultural Science and Technology, 2015(5): 34-37.
doi: 10.3969/j.issn.1001-1463.2015.05.010
|
|
|
[4] |
李更强,郭新荣.锤片式粉碎机锤片的设计与研究[J].农业技术与装备,2012(5):38-40. doi:10.3969/j.issn.1673-887X.2012.03.018 LI G Q, GUO X R. Design and research of hammer blade of hammer mill[J]. Agricultural Technology & Equipment, 2012(5): 38-40.
doi: 10.3969/j.issn.1673-887X.2012.03.018
|
|
|
[5] |
陈培军,邓援超.基于TRIZ原理的粉碎机锤片结构问题解决方案[J].湖北工业大学学报,2012,27(2):89-91. doi:10.3969/j.issn.1003-4684.2012.02.024 CHEN P J, DENG Y C. On the sheet structure of hammer mill using TRIZ theory[J]. Journal of Hubei University of Technology, 2012, 27(2): 89-91.
doi: 10.3969/j.issn.1003-4684.2012.02.024
|
|
|
[6] |
苏从毅,王永昌,俞信国,等.开刃锤片是提高粉碎机效率的新途径[J].饲料工业,2016,37(1):12-18. SU C Y, WANG Y C, YU X G, et al. Groove-welding on hammers will enhance crusher's working efficiency[J]. Feed Industry, 2016, 37(1): 12-18.
|
|
|
[7] |
谌春炜,付敏.枝桠材粉碎机锤片创新设计[J].森林工程,2012,28(2):47-49,78. doi:10.3969/j.issn.1001-005X.2012.02.012 CHEN C W, FU M. Innovative design of grinder pulverization hammer for branch[J]. Forest Engineering, 2012, 28(2): 47-49, 78.
doi: 10.3969/j.issn.1001-005X.2012.02.012
|
|
|
[8] |
YANCEY N, WRIGHT C T, WESTOVER T L. Optimizing hammer mill performance through screen selection and hammer design[J]. Biofuels, 2013, 4(1): 85-94.
|
|
|
[9] |
DORODOV P V, KASATKIN V V, PETROV V A, et al. Improving the reliability of the hammer grain crusher by optimal design of the paddle wheel[J]. IOP Conference Series: Earth and Environmental Science, 2022, 981: 042039.
|
|
|
[10] |
BOCHAT A, WESOLOWSKI L, ZASTEMPOWSKI M. A comparative study of new and traditional designs of a hammer mill[J]. Transactions of the ASABE, 2015, 58(3): 585-596.
|
|
|
[11] |
DICKINSON M H. Bionics: biological insight into mechanical design[J]. PNAS, 1999, 96(25): 14208-14209.
|
|
|
[12] |
JUNIOR W K, GUANABARA A S. Methodology for product design based on the study of bionics[J]. Materials & Design, 2005, 26(2): 149-155.
|
|
|
[13] |
QUINN S, GAUGHRAN W. Bionics—an inspiration for intelligent manufacturing and engineering[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(6): 616-621.
|
|
|
[14] |
童晗笑,权威,任新宇.仿生设计方法在现代产品设计中的应用现状研究[J].艺海,2020(3):70-71. TONG H X, QUAN W, REN X Y. Research on the application status of bionic design method in modern product design[J]. Yihai, 2020(3): 70-71.
|
|
|
[15] |
石峰,郑赟,马用超.气候适应性建筑表皮的仿生设计研究[J].南方建筑,2023(2):22-32. doi:10.3969/j.issn.1000-0232.2023.02.003 SHI F, ZHENG Y, MA Y C. A study of the bionic design of a climate-adaptability building surface[J]. South Architecture, 2023(2): 22-32.
doi: 10.3969/j.issn.1000-0232.2023.02.003
|
|
|
[16] |
秦施埼,任泽春,王辰希,等.基于3D打印的木材细胞壁仿生设计[J].复合材料学报,2023,40(2):1085-1095. QIN S Q, REN Z C, WANG C X, et al. Bionic design of wood cell wall based on 3D printing[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1085-1095.
|
|
|
[17] |
RUAN Y Y, KONSTANTINOV A S, SHI G Y, et al. The jumping mechanism of flea beetles (Coleoptera, Chrysomelidae, Alticini), its application to bionics and preliminary design for a robotic jumping leg[J]. ZooKeys, 2020, 915: 87.
|
|
|
[18] |
杨立宁,郑东昊,王立新,等.基于蜻蜓翅脉结构的连续碳纤维增强树脂基复合材料仿生设计与增材制造[J].化工进展,2022,41(11):5961-5967. YANG L N, ZHENG D H, WANG L X, et al. Bionic design and additive manufacturing of continuous carbon fiber reinforced resin matrix composites with dragonfly wing venation structure[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5961-5967.
|
|
|
[19] |
陈宇航,陈文家,郭成东,等.半规管积水膨大仿生设计及生物力学特性研究[J].实验技术与管理,2022,39(12):75-79,92. CHEN Y H, CHEN W J, GUO C D, et al. Research on biomimetic design and biomechanical properties of semicircular canal hydrops swelling[J]. Experimental Technology and Management, 2022, 39(12): 75-79, 92.
|
|
|
[20] |
AZOCAR A F, MOONEY L M, DUVAL J F, et al. Design and clinical implementation of an open-source bionic leg[J]. Nature Biomedical Engineering, 2020, 4(10): 941-953.
|
|
|
[21] |
FUKUDA T. Cyborg and bionic systems: signposting the future[J]. Cyborg and Bionic Systems, 2020, 2020: 1310389.
|
|
|
[22] |
谢峰,沈维蕾,张晔.河狸门牙几何特征的提取及其生物力学性能分析[J].中国机械工程,2011,22(10):1149-1153. XIE F, SHEN W L, ZHANG Y. Gaining of geometric characteristics for incisor teeth and its analysis of biologic mechanics property[J]. China Mechanical Engineering, 2011, 22(10): 1149-1153.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|