Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (2): 178-187    DOI: 10.3785/j.issn.1006-754X.2024.03.187
Mechanical Optimization Design     
Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology
Jinyun CAI1,2(),Zhong LIU1,2,3(),Gang WANG4,Qingbin ZHAO5,Ning AN5,Xuwei DU6,Dongliang LI6,Yuanzhou LI1
1.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2.Guangxi Key Laboratory of Special Engineering Equipment and Control, Guilin, 541004, China
3.School of Mechanical Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
4.Tibet Electric Power Co. , Ltd. , State Grid Corporation of China, Lhasa 850000, China
5.Sichuan Electric Power Design and Consulting Co. , Ltd. , Power Construction Corporation of China, Chengdu 610000, China
6.Qinghai Power Transmission and Transformation Engineering Co. , Ltd. , Xining 810000, China
Download: HTML     PDF(4738KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the lightweight problem of auxiliary tail rope pulling device for winch mill, an optimization design method based on response surface methodology is proposed in combination with the stiffness and strength requirements of the device. Through the parametric modeling and statics analysis of the auxiliary tail rope pulling device for winch mill, the key structural dimensions of the auxiliary tail rope pulling device were taken as the design parameters, the minimum overall mass was taken as the objective function, and the maximum equivalent stress and maximum deformation were taken as the constraint conditions. The response surface model was established by the central composite design method, and the fitting degree of the response surface and the sensitivity of the design parameters were analyzed. Based on the response surface model, the optimal solution set was iteratively sought, and the optimal design parameters of the auxiliary tail rope pulling device were obtained. After optimized design, the mass of the auxiliary tail rope pulling device was reduced by 29%, and the engineering verification showed that the auxiliary tail rope pulling device was light, efficient and reliable, and had achieved the expected application effect, which verified the feasibility and effectiveness of the proposed optimization design method. The research results can provide theoretical support and technical guidance for structural optimization design and practical application of the same type of engineering equipment.



Key wordswinch mill      auxiliary tail rope pulling device      finite element analysis      response surface methodology      optimization design     
Received: 05 July 2023      Published: 26 April 2024
CLC:  TH 122  
Corresponding Authors: Zhong LIU     E-mail: 1789991528@qq.com;Liuzhong678@163.com
Cite this article:

Jinyun CAI,Zhong LIU,Gang WANG,Qingbin ZHAO,Ning AN,Xuwei DU,Dongliang LI,Yuanzhou LI. Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology. Chinese Journal of Engineering Design, 2024, 31(2): 178-187.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.187     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I2/178


基于响应面法的绞磨机辅助拉尾绳装置优化设计

针对绞磨机辅助拉尾绳装置的轻量化问题,结合装置的刚度和强度要求,提出了一种基于响应面法的优化设计方法。通过对绞磨机辅助拉尾绳装置进行参数化建模和静力学分析,将辅助拉尾绳装置的关键结构尺寸作为设计参数,以整体质量最小为目标函数、最大等效应力和最大变形量为约束条件,采用中心复合设计法建立响应面模型,并对响应面的拟合程度和设计参数的灵敏度进行分析。基于响应面模型迭代寻求最优解集,以获得辅助拉尾绳装置的最优设计参数。经优化设计后,辅助拉尾绳装置的质量减小了29%,且工程验证表明,辅助拉尾绳装置整体轻便高效且工作可靠,达到了预期的应用效果,由此验证了所提出的优化设计方法的可行性和有效性。研究结果可为同类型工程装备的结构优化设计与实际应用提供理论支撑和技术指导。


关键词: 绞磨机,  辅助拉尾绳装置,  有限元分析,  响应面法,  优化设计 
Fig.1 Structure schematic of novel winch mill
Fig.2 Structure schematic of auxiliary tail rope pulling device
Fig.3 Force schematic of auxiliary tail rope pulling device
Fig.4 Structure simplification schematic of auxiliary tail rope pulling device
Fig.5 Finite element model of auxiliary tail rope pulling device
参数数值
弹性模量/GPa210
泊松比0.31
材料密度/(kg/m37 850
屈服强度/MPa355
抗拉强度/MPa490
Table 1 Mechanical property parameters of Q355 steel
Fig.6 Working load setting for auxiliary tail rope pulling device
Fig.7 Deformation cloud map of auxiliary tail rope pulling device
Fig.8 Equivalent stress cloud map of auxiliary tail rope pulling device
Fig.9 Second-order polynomial response surface model
Fig.10 Structure optimization process of auxiliary tail rope pulling device based on response surface methodology
参数取值范围
H162.5~150
T110~22
T210~22
D113~25
D213~25
Table 2 Range of design parameters of auxiliary tail rope pulling device
Fig.11 Force sketch of upper shaft
试验编号设计参数

最大等效应力

σmax/MPa

最大变形量

δmax/mm

质量m/kg
H1/mmT1/mmT2/mmD1/mmD2/mm
1106.316.016.019.019.0158.220.2412.00
262.516.016.019.019.0158.280.2010.12
3150.016.016.019.019.0155.790.1814.96
4106.310.016.019.019.0158.220.2811.05
5106.322.016.019.019.0158.240.2212.95
6106.316.010.019.019.0158.210.2411.16
7106.316.022.019.019.0158.210.2412.84
8106.316.016.013.019.0465.710.6911.91
9106.316.016.025.019.0147.830.1612.12
10106.316.016.019.013.0371.780.2411.97
11106.316.016.019.025.0158.450.1712.05
1293.914.314.317.320.7199.740.2910.83
13118.614.314.317.317.3204.960.3212.18
1493.917.714.317.317.3199.740.2811.35
15118.617.714.317.320.7205.020.3012.75
1693.914.317.717.317.3205.190.2911.29
17118.614.317.717.320.7204.960.3212.68
1893.917.717.717.320.7205.240.2811.85
19118.617.717.717.317.3205.020.3013.20
2093.914.314.320.717.3164.360.1910.87
21118.614.314.320.720.7121.670.2212.26
2293.917.714.320.720.7121.110.1811.43
23118.617.714.320.717.3164.380.2112.78
2493.914.317.720.720.7121.730.2011.37
25118.614.317.720.717.3163.720.2212.72
2693.917.717.720.717.3163.730.1811.89
Table 3 Eexperimental design schemes and results of structure optimization of auxiliary tail rope pulling device based on CCD method
响应面模型R2ERMS
质量10.000 43
最大变形量0.999 710.001 68
最大等效应力0.999 610.042 57
Table 4 Evaluation results of fitting degree of each response surface model for auxiliary tail rope pulling device
Fig.12 Regression fitting results of each response surface model for auxiliary tail rope pulling device
Fig.13 Sensitivity analysis results of each design parameters of auxiliary tail rope pulling device
Fig.14 Influence of H1, T1 on mass of auxiliary tail rope pulling device
Fig.15 Influence of H1, D1 on the maximum deformation of auxiliary tail rope pulling device
Fig.16 Influence of D1, D2 on the maximum equivalent stress of auxiliary tail rope pulling device
参数初始值优化值
解集1解集2解集3
H1/mm97.081.386.684.8
T1/mm20.011.711.510.8
T2/mm20.010.710.111.4
D1/mm20.023.420.619.3
D2/mm18.023.418.721.0
m/kg13.49.59.49.5
δmax/mm0.200.140.200.24
σmax/MPa135.984.5139.4145.4
Table 5 Structure optimization results of auxiliary tail rope pulling device
Fig.17 Winch mill before improvement
Fig. 18 Improved winch mill with auxiliary tail rope pulling device
Fig. 19 Site of new winch mill performing tower lifting operation
[1]   程龙瑞.新型双滚筒绞磨机传动结构及改进设计研究[D].徐州:中国矿业大学,2018:1-3.
CHENG L R. Study on the transmission structure and improved design of a new double rollers windlass[D]. Xuzhou: China University of Mining and Technology, 2018: 1-3.
[2]   卓俊帆,李瑶.输变电工程建设中的吊装技术分析[J].科技创新导报,2018,15(36):56-57.
ZHUO J F, LI Y. Analysis of lifting technology in power transmission and substation construction[J]. Science and Technology Innovation Herald, 2018, 15(36): 56-57.
[3]   刘忠,蔡锦云,王罡,等.复杂山区微型钢管桩钻机的研制与应用[J].机电工程技术,2023,52(10):6-10. doi:10.3969/j.issn.1009-9492.2023.10.002
LIU Z, CAI J Y, WANG G, et al. Development and application of miniature steel pipe pile drilling rig in complex mountainous areas[J]. Mechanical & Electrical Engineering Technology, 2023, 52(10): 6-10.
doi: 10.3969/j.issn.1009-9492.2023.10.002
[4]   KHURI A I, MUKHOPADHYAY S. Response surface methodology[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(2): 128-149.
[5]   KAHRAMAN M F, ÖZTÜRK S. Experimental study of newly structural design grinding wheel considering response surface optimization and Monte Carlo simulation[J]. Measurement, 2019, 147: 106825.
[6]   韩正清,许金,芮万智,等.高速短初级直线感应电动机等效电路模型及时变参数辨识[J].电机与控制学报,2021,25(11):8-15.
HAN Z Q, XU J, RUI W Z, et al. Equivalent circuit model and time-varying parameter identification of high speed short primary linear induction motors[J]. Electric Machines and Control, 2021, 25(11): 8-15.
[7]   ZHANG Z, JIA X H, YANG T, et al. Multi-objective optimization of lubricant volume in an ELSD considering thermal effects[J]. International Journal of Thermal Sciences, 2021, 164: 106884.
[8]   徐光亿,齐志冲,田彦朝,等.基于响应面法的沉井掘进机回转装置优化设计[J].机械设计,2022,39():92-97.
XU G Y, QI Z C, TIAN Y Z, et al. Optimization design of rotary device of caisson roadheader based on response surface method[J]. Journal of Machine Design, 2022, 39(Supplment 2): 92-97.
[9]   张开拓,管殿柱,白硕玮,等.基于响应面分析法的龙门式折弯机轻量化设计[J].制造业自动化,2019,41(1):57-60. doi:10.3969/j.issn.1009-0134.2019.01.013
ZHANG K T, GUAN D Z, BAI S W, et al. Lightweight design of gantry bending machine based on response surface methodology[J]. Manufacturing Automation, 2019, 41(1): 57-60.
doi: 10.3969/j.issn.1009-0134.2019.01.013
[10]   DING Z L, XUE J H, ZHU X Y, et al. Optimization of CSG dam profile based on response surface methodology[J]. Case Studies in Construction Materials, 2022, 17: e01430.
[11]   邢雷,李金煜,赵立新,等.基于响应面法的井下旋流分离器结构优化[J].中国机械工程,2021,32(15):1818-1826. doi:10.3969/j.issn.1004-132X.2021.15.007
XING L, LI J Y, ZHAO L X, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826.
doi: 10.3969/j.issn.1004-132X.2021.15.007
[12]   李银波,汤子汉,季林红,等.下肢外骨骼人机互连装置对关节内力的影响[J].清华大学学报(自然科学版),2019,59(7):544-550.
LI Y B, TANG Z H, JI L H, et al. Physical human-robot interface for lower limb exoskeletons to affect internal joint forces[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7): 544-550.
[13]   孙光明,王奕苗,万仟,等.考虑装配变形的精密机床床身优化设计[J].工程设计学报,2022,29(3):318-326. doi:10.3785/j.issn.1006-754X.2022.00.035
SUN G M, WANF Y M, WAN Q, et al. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
doi: 10.3785/j.issn.1006-754X.2022.00.035
[14]   李海峰,吴冀川,刘建波,等.有限元网格剖分与网格质量判定指标[J].中国机械工程,2012,23(3):368-377. doi:10.3969/j.issn.1004-132X.2012.03.026
LI H F, WU J C, LIU J B, et al. Finite element mesh generation and decision criteria of mesh quality[J]. China Mechanical Engineering, 2012, 23(3): 368-377.
doi: 10.3969/j.issn.1004-132X.2012.03.026
[15]   成大先.机械设计手册[M].5版.北京:化学工业出版社,2008:55-65.
CHENG D X. Mechanical design manual[M]. 5th ed. Beijing: Chemical Industry Press, 2008: 55-65.
[16]   刘鸿文.材料力学[M].6版.北京:高等教育出版社,2017:193-196. doi:10.1051/ncssc/201701045
LIU H W. Mechanics of materials[M]. 6th ed. Beijing: Higher Education Press, 2017: 193-196.
doi: 10.1051/ncssc/201701045
[17]   张焕梅,杨瑞刚.基于响应面法的起重机结构可靠性灵敏度分析[J].中国工程机械学报,2020,18(2):131-136.
ZHANG H M, YANG R G. Reliability sensitivity analysis of crane structure based on response surface method[J]. Chinese Journal of Construction Machinery, 2020, 18(2): 131-136.
[18]   郑娆,张敬博,李双喜,等.基于响应面法的船舶艉轴密封结构的优化设计[J].机电工程,2022,39(11):1544-1550. doi:10.3969/j.issn.1001-4551.2022.11.007
ZHENG R, ZHANG J B, LI S X, et al. Optimization design of ship stern shaft seal structure based on response surface method[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(11): 1544-1550.
doi: 10.3969/j.issn.1001-4551.2022.11.007
[19]   KARSH P K, MUKHOPADHYAY T, CHAKRABORTY S, et al. A hybrid stochastic sensitivity analysis for low-frequency vibration and low-velocity impact of functionally graded plates[J]. Composites Part B: Engineering, 2019, 176: 107221.
[1] Wangcheng CAO,Jiaxuan HAN,Tingqiang YAO. Dynamic optimization design of internal toothed toothed slewing bearing based on parametric multi-body dynamic model[J]. Chinese Journal of Engineering Design, 2024, 31(2): 168-177.
[2] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chinese Journal of Engineering Design, 2023, 30(5): 626-633.
[3] Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chinese Journal of Engineering Design, 2023, 30(4): 467-475.
[4] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chinese Journal of Engineering Design, 2023, 30(2): 172-181.
[5] San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator[J]. Chinese Journal of Engineering Design, 2022, 29(6): 684-694.
[6] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chinese Journal of Engineering Design, 2022, 29(6): 713-719.
[7] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chinese Journal of Engineering Design, 2022, 29(6): 720-730.
[8] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
[9] Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(2): 161-167.
[10] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
[11] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chinese Journal of Engineering Design, 2021, 28(4): 504-510.
[12] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chinese Journal of Engineering Design, 2021, 28(2): 227-234.
[13] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chinese Journal of Engineering Design, 2021, 28(2): 203-209.
[14] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chinese Journal of Engineering Design, 2021, 28(1): 25-32.
[15] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chinese Journal of Engineering Design, 2021, 28(1): 95-104.