Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 130-136    DOI: 10.3785/j.issn.1006-754X.2024.03.311
Multidisciplinary Simulation and Optimization Design     
Research on dynamics simulation and optimization method for high-bandwidth unimorph piezoelectric deformable mirror
Kaike YANG(),Junpeng LUO,Wenjing MA,Yuanchao GENG,Deen WANG(),Qiang YUAN
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
Download: HTML     PDF(3865KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to further improve the response speed and lightweight extent of piezoelectric wavefront correctors, the dynamics simulation and optimization method of unimorph piezoelectric deformable mirrors for high dynamic shape control was studied. Firstly, based on the parameterized finite element model of unimorph piezoelectric deformable mirror, an efficient and high-precision electromechanical coupling dynamics simulation analysis method was proposed. Then, through orthogonal traversal of multi-dimensional design parameters (material type, geometric dimension and fixation mode of the optical reflector and piezoelectric ceramic), the influence of different parameters on the dynamic shape control performance of unimorph piezoelectric deformable mirrors was explored. Finally, the optimized design scheme of the unimorph piezoelectric deformable mirror with expected response bandwidth and actuation displacement performance was obtained. The experimental results show that the natural frequency and mirror actuation displacement amplitude of the developed unimorph piezoelectric deformable mirror are in line with expectations, which verifies the effectiveness of the proposed dynamics simulation and optimization method and provides a scientific theoretical method for the efficient development of high-bandwidth unimorph piezoelectric deformable mirrors.



Key wordshigh-bandwidth unimorph piezoelectric deformable mirror      electromechanical coupling dynamics simulation      orthogonal traversal      multi-dimensional design parameters     
Received: 20 October 2023      Published: 04 March 2024
CLC:  TH 122  
Corresponding Authors: Deen WANG     E-mail: 1411317375@qq.com;sduwde@126.com
Cite this article:

Kaike YANG,Junpeng LUO,Wenjing MA,Yuanchao GENG,Deen WANG,Qiang YUAN. Research on dynamics simulation and optimization method for high-bandwidth unimorph piezoelectric deformable mirror. Chinese Journal of Engineering Design, 2024, 31(1): 130-136.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.311     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/130


高带宽压电片变形镜的动力学仿真与优化方法研究

为进一步提高压电波前校正器的响应速度和轻量化程度,对面向高动态形状控制的压电片变形镜的动力学仿真与优化方法进行了研究。首先,基于压电片变形镜的参数化有限元模型,提出了高效、高精度的电-力耦合动力学仿真分析方法。然后,通过正交遍历多维设计参数(光学反射镜与压电陶瓷的材料类型、几何尺寸和固定方式等),探究了不同参数对压电片变形镜动态形状控制性能的影响规律。最后,优化得到具有预期响应带宽和驱动位移性能的压电片变形镜设计方案,并通过制备压电片变形镜的原理样件来验证其性能。实验结果表明,所研制的压电片变形镜的固有频率和镜面驱动位移幅值符合预期,验证了所提出的动力学仿真与优化方法的有效性,这可为高带宽压电片变形镜的高效研制提供科学的理论方法。


关键词: 高带宽压电片变形镜,  电-力耦合动力学仿真,  正交遍历,  多维设计参数 
Fig.1 Schematic of working principle of unimorph piezoelectric deformable mirror
Fig.2 Geometric model and electrode layout of unimorph piezoelectric deformable mirror
Fig.3 Optimization flow for multi-dimensional design parameters of unimorph piezoelectric deformable mirror
Fig.4 Finite element model of unimorph piezoelectric deformable mirror and its actuation displacement nephogram
Fig.5 Simulated performance of unimorph piezoelectric deformable mirror corresponding to multi-dimensional design parameters
Fig.6 Actuation displacement nephogram of unimorph piezoelectric deformable mirror under single channel voltage control
Fig.7 Actuation displacement amplitude of unimorph piezoelectric deformable mirror under different excitation frequencies
Fig.8 Principle prototype of unimorph piezoelectric deformable mirror
Fig.9 Optical path for measuring surface shape of unimorph piezoelectric deformable mirror
Fig.10 Measured actuation displacement of unimorph piezoelectric deformable mirror under single channel voltage control
Fig.11 Measurement scheme for actuation displacement response speed of unimorph piezoelectric deformable mirror
Fig.12 Actuation displacement response speed at the electrode 1 of unimorph piezoelectric deformable mirror
[1]   朱文越,王辉华,陈小威,等.高能激光大气传输评估的不确定性研究[J].量子电子学报,2020,37(5):524-533. doi:10.3969/j.issn.1007-5461.
ZHU W Y, WANG H H, CHEN X W, et al. Uncertainty analysis of evaluation of high power laser propagation in atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 524-533.
doi: 10.3969/j.issn.1007-5461.
[2]   侯瑞鹏,孟凡斌,杨凯,等.激光远场大气稳定传输的光场调控技术研究[J].光电技术应用,2023,38(3):22-29. doi:10.3969/j.issn.1673-1255.2023.03.004
HOU R P, MENG F B, YANG K, et al. Light field control technology for stable laser transmission in far field atmosphere[J]. Electro-Optic Technology Application, 2023, 38(3): 22-29.
doi: 10.3969/j.issn.1673-1255.2023.03.004
[3]   王凯迪.大气湍流波前畸变的自适应光学校正技术研究[D].北京:中国科学院大学,2021:1-2.
WANG K D. Research on correction technology of wavefront distortion from atmospheric turbulence by adaptive optics system[D]. Beijing: University of Chinese Academy of Sciences, 2021: 1-2.
[4]   DONG Y Z, ZOU K, LIANG R H, et al. Review of BiScO3-PbTiO3 piezoelectric materials for high temperature applications: fundamental, progress, and perspective[J]. Progress in Materials Science, 2023, 132: 101026.
[5]   郑炳金.PZT基叠层压电陶瓷制备及界面优化[D].南京:南京航空航天大学,2017:29-43.
ZHENG B J. Fabrication of PZT-based multilayer piezoelectric ceramic and interface optimization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 29-43.
[6]   王德恩,胡东霞,代万俊,等.压电薄膜变形镜响应函数计算及参数优化[J].强激光与粒子束,2011,23(5):1255-1258. doi:10.3788/hplpb20112305.1255
WAND D E, HU D X, DAI W J, et al. Response function calculation and parameter optimization of piezoelectric film deformable mirror[J]. High Power Laser and Particle Beams, 2011, 23(5): 1255-1258.
doi: 10.3788/hplpb20112305.1255
[7]   张晋弘,许晓慧,冯艳,等.MEMS压电变形镜的有限元分析与结构优化设计[J].压电与声光,2010,32(2):254-257. doi:10.3969/j.issn.1004-2474.2010.02.026
ZHANG J H, XU X H, FENG Y, et al. Finite element analysis and structural optimization design of MEMS piezoelectric deformable mirror[J]. Piezoelectricity & Acoustooptics, 2010, 32(2): 254-257.
doi: 10.3969/j.issn.1004-2474.2010.02.026
[8]   朱衡.大口径高速压电倾斜镜结构设计与分析[D].成都:中国科学院光电技术研究所,2009:1-73.
ZHU H. Structure design and analysis of large aperture fast piezo steering mirror[J]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2009:1-73.
[9]   程罡.压电双晶片执行器及其在高旋飞行器姿态调控中的应用[D].南京:南京航空航天大学,2019:18-37. doi:10.15892/j.cnki.djzdxb.2019.06.031
CHENG G. Piezoelectric bimorph actuator and its application in attitude control of high speed spinning projectile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 18-37.
doi: 10.15892/j.cnki.djzdxb.2019.06.031
[10]   吴伟彬,戴一帆,关朝亮,等.横向压电效应变形镜优化设计[J].红外与激光工程,2016,45(8):215-221. doi:10.3788/IRLA201645.0818003
WU W B, DAI Y F, GUAN C L, et al. Optimization design for transversal piezoelectric effect deformable mirror[J]. Infrared and Laser Engineering, 2016, 45(8): 215-221.
doi: 10.3788/IRLA201645.0818003
[11]   王琴琴,周孟德,孙晨晋,等.压电叠堆作动器率相关迟滞非线性建模研究[J].压电与声光,2022,44(6):907-912. doi:10.11977/j.issn.1004-2474.2022.06.016
WANG Q Q, ZHOU M D, SUN C J, et al. Modeling on rate-dependent hysteresis nonlinear characteristics of piezoelectric stack actuators[J]. Piezoelectrics & Acoustooptics, 2022, 44(6): 907-912.
doi: 10.11977/j.issn.1004-2474.2022.06.016
[12]   陈新东,郑立功,张学军.一种新型的变形镜促动器排布方式设计与分析[J].中国激光,2011,38():s116007. doi:10.3788/cjl201138.s116007
CHEN X D, ZHENG L G, ZHANG X J. Design and analysis of a novel actuator topology of deformable mirrors[J]. Chinese Journal of Lasers, 2011, 38(Supp. 1): s116007.
doi: 10.3788/cjl201138.s116007
[13]   WANG Y Q, LUO Z, ZHANG X P, et al. Topological design of compliant smart structures with embedded movable actuators[J]. Smart Materials and Structures, 2014, 23(4): 045024.
[14]   刘虎.结构动力学拓扑优化关键问题研究[D].西安:西北工业大学,2015:16-18. doi:10.17285/0869-7035.2016.24.1.100-115
LIU H. Research on key issues in topology optimization of dynamic structures[D]. Xi'an: Northwestern Polytechnical University, 2015: 16-18.
doi: 10.17285/0869-7035.2016.24.1.100-115
[15]   于晨阳.基于模态加速度法的振动谐响应修正研究与并行实现[D].绵阳:中国工程物理研究院,2019:17-20.
YU C Y. Research on vibration harmonic response correction and parallel implementation based on modal acceleration method[D]. Mianyang: China Academy of Engineering Physics, 2019: 17-20.
[16]   马剑强,刘莹,陈俊杰,等.200单元硅基单压电变形镜的设计与测试[J].光学精密工程,2014,22(8):2047-2053. doi:10.3788/ope.20142208.2047
MA J Q, LIU Y, CHEN J J, et al. Design and performance testing of 200-element silicon unimorph deformable mirror[J]. Optics and Precision Engineering, 2014, 22(8): 2047-2053.
doi: 10.3788/ope.20142208.2047
[17]   马剑强.压电厚膜驱动的变形镜技术研究[D].合肥:中国科学技术大学,2012:29-39.
MA J Q. Piezoelectric deformable mirror for adaptive optics[D]. Hefei: University of Science and Technology of China, 2012: 29-39.
[18]   范兴明,马世伟,张鑫,等.基于ANSYS的压电陶瓷晶片PZT仿真分析[J].压电与声光,2014,36(3):416-420. doi:10.3969/j.issn.1004-2474.2014.03.031
FAN X M, MA S W, ZHANG X, et al. Simulation analysis of piezoelectric ceramic chip PZT based on ANSYS[J]. Piezoelectrics & Acoustooptics, 2016, 36(3): 416-420.
doi: 10.3969/j.issn.1004-2474.2014.03.031
[19]   范占斌,戴一帆,宁禹,等.低阶像差校正的压电驱动变形镜测试与仿真优化[J].国防科技大学学报,2018,40(4):106-111. doi:10.11887/j.cn.201804017
FAN Z B, DAI Y F, NING Y, et al. Test and simulation optimizing of the unimorph deformable mirror for low-order aberration correction[J]. Journal of National University of Defense Technology, 2018, 40(4): 106-111.
doi: 10.11887/j.cn.201804017
[20]   林旭东,刘欣悦,李洪文,等.变形镜及其驱动器的动态响应测试研究[J].红外技术,2011,33(11):659-662. doi:10.3969/j.issn.1001-8891.2011.11.009
LIN X D, LIU X Y, LI H W, et al. Research on dynamic response testing of deformable mirror and its driver[J]. Infrared Technology, 2011, 33(11): 659-662.
doi: 10.3969/j.issn.1001-8891.2011.11.009
[1] Zhenzhong CHEN,Dongyu HUANG,Jiao TIAN,Xiaoke LI,Zihao WU. Structural reliability analysis method based on second order parabolic approximation[J]. Chinese Journal of Engineering Design, 2024, 31(1): 50-58.
[2] Lei ZHANG,Junwei FANG,Jin SU,Chuang CAI,Yunqi ZHAO. Method for generating green conceptual design scheme of electromechanical products based on FSRce model[J]. Chinese Journal of Engineering Design, 2024, 31(1): 10-19.
[3] Jia LI,Meili SONG,Jun FENG,Haibin TANG. Study on impact resistance of bio-inspired thin-walled structure for laser additive manufacturing[J]. Chinese Journal of Engineering Design, 2024, 31(1): 67-73.
[4] Liyong TIAN,Rui TANG,Ning YU,Hongyue CHEN. Design and application of belt lifting mechanism for replacing idler of belt conveyor[J]. Chinese Journal of Engineering Design, 2023, 30(6): 667-677.
[5] Mingfang CHEN,Liangen HUANG,Yongxia ZHANG,Guoyi YAO. Kinematics analysis and validation of 3-PUU parallel mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(6): 763-778.
[6] Zhonghang BAI,Linjing AI. Research on product ergonomics problem determination method based on functional surface drive and extension tools[J]. Chinese Journal of Engineering Design, 2023, 30(5): 531-544.
[7] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chinese Journal of Engineering Design, 2023, 30(4): 419-428.
[8] Xuelin DU,Wenhui YI,Jiahua ZOU,Can ZHOU,Li MAO,Lishi DENG,Ying LIU. Structure design and motion realization of multi-joint snakelike robot[J]. Chinese Journal of Engineering Design, 2023, 30(4): 438-448.
[9] Jindong WANG,Yuhong XIE,Yi CHEN,Zhanyang WU. Biomimetic design of hammer pieces for hammer mill based on beaver incisors[J]. Chinese Journal of Engineering Design, 2023, 30(4): 476-484.
[10] Jun GUAN,Yihua DING,Qingtao GE,Shuai ZHAO,Yang LU,Jie ZHANG. Rapid manufacturing of RFID antennas based on multi-material 3D printing technology[J]. Chinese Journal of Engineering Design, 2023, 30(3): 288-296.
[11] Zhan YANG,Qipeng LI,Wei TANG,Kecheng QIN,Suifan CHEN,Kaidi WANG,Yang LIU,Jun ZOU. Design and analysis of small land-air deformable amphibious robot[J]. Chinese Journal of Engineering Design, 2023, 30(3): 325-333.
[12] Yuqi DING,Chaoliang YANG,Ye LU,Ming YANG,Jiahe ZHANG,Kai LIU,Hong LU. Evaluation and analysis of implosion weak roof performance of storage tank based on multiple discriminant conditions[J]. Chinese Journal of Engineering Design, 2023, 30(2): 144-153.
[13] Ganhua YANG,Qingjun ZENG,Chunwei HAN,Xin HUANG,Xiaoqiang DAI. Design and implementation of soft hand position tracking for human-computer interactive teleoperation robot[J]. Chinese Journal of Engineering Design, 2023, 30(2): 164-171.
[14] Guangming SUN,Dawei ZHANG,Mingze SUN,Pengfei XU,Faze CHEN,Zhijun LI. Research on error averaging mechanism of linear feed system for precision machine tools[J]. Chinese Journal of Engineering Design, 2023, 30(2): 200-211.
[15] Weijie DUAN,Huibin QIN,Rong LIU,Zhongyi LI,Shaoping BAI. Design and performance analysis of reconfigurable variable stiffness compliant actuator[J]. Chinese Journal of Engineering Design, 2023, 30(2): 262-270.