Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 144-153    DOI: 10.3785/j.issn.1006-754X.2023.00.025
Basic Theory and Method of Design     
Evaluation and analysis of implosion weak roof performance of storage tank based on multiple discriminant conditions
Yuqi DING(),Chaoliang YANG,Ye LU(),Ming YANG,Jiahe ZHANG,Kai LIU,Hong LU
College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
Download: HTML     PDF(4732KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Storage tanks are prone to structural failure under occasional explosive loads, resulting in the outflow of liquid inside the tank and causing huge economic losses. However, storage tanks designed with weak roofs can reduce losses in such accidents. Therefore, taking the vertical vault storage tank as the research object, taking into account factors such as internal pressure, stress and crack propagation during the tank failure process, a method for evaluating the implosion weak roof performance of storage tank based on multiple discriminant conditions was established. Meanwhile, by means of numerical simulation, a three-dimensional finite element model of storage tank implosion was established using the CEL (coupled Euler-Lagrange) fluid-structure coupling algorithm. The failure process of storage tank under implosion load and the weak roof performance of storage tank under different influencing factors were studied. The calculation results showed that in the evaluation of weak roof performance based on pressure and stress, the peak pressure ratios of the storage tank at positions of 90°, 135° and 180° were greater than 1, meeting the requirements of weak roof; in the evaluation of weak roof performance based on structural fracture, due to the extension of cracks below the liquid level, two cracks passed through the liquid level of 1.99 m and 5.21 m, respectively, and the storage tank did not have weak roof performance. As the volume and liquid level of the storage tank increased, the weak roof performance of storage tank increased. Based on the calculated results, the method of setting a protective ring above the liquid level was adopted to optimize the storage tank, so that the non-weak roof storage tank met the design requirements of the weak roof structure. The established evaluation conditions for the weak roof performance of storage tanks can provide reference for the design and analysis of the weak roof of storage tanks.



Key wordsstorage tank      implosion      structural failure      crack      weak roof     
Received: 25 August 2022      Published: 06 May 2023
CLC:  TH 122  
Corresponding Authors: Ye LU     E-mail: jslx2004@163.com;luye_nepu@163.com
Cite this article:

Yuqi DING,Chaoliang YANG,Ye LU,Ming YANG,Jiahe ZHANG,Kai LIU,Hong LU. Evaluation and analysis of implosion weak roof performance of storage tank based on multiple discriminant conditions. Chin J Eng Design, 2023, 30(2): 144-153.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.025     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/144


基于多判别条件的储罐内爆弱顶性能评价分析

储罐在偶发爆炸载荷作用下易发生结构破坏,致使罐内储液流出,从而造成巨大的经济损失,但采用弱顶设计的储罐在此类事故发生时能减少损失。为此,以立式拱顶储罐为研究对象,综合考虑储罐破坏过程中内部压力、应力以及裂纹扩展等因素,建立了基于多判别条件的储罐内爆弱顶性能评价方法。同时,通过数值模拟手段,采用CEL(coupled Euler-Lagrange, 耦合欧拉-拉格朗日)流固耦合算法建立了储罐内爆三维有限元模型,对内爆载荷作用下储罐的破坏过程及不同影响因素下储罐的弱顶性能开展研究。计算结果表明:在基于压力和应力的弱顶性能评价中,储罐在90°,135°,180°位置处的峰值压力比大于1,满足弱顶要求;在基于结构断裂的弱顶性能评价中,由于裂纹延伸到液位以下,2条裂纹分别穿过液位1.99 m和5.21 m,储罐不具备弱顶性能。随着储罐容积的增加、液位的升高,储罐的弱顶性能增强。根据计算所得结果,采取在液位以上设置防护圈的方法对储罐进行优化,使得非弱顶储罐满足弱顶结构设计要求。所建立的储罐弱顶性能评价条件可为储罐的弱顶设计及分析提供参考。


关键词: 储罐,  内爆,  结构破坏,  裂纹,  弱顶 
Fig.1 Schematic diagram of structural failure of storage tank under implosion load
Fig.2 Structure diagram of vertical vault storage tank
Fig.3 Three-dimensional finite element model of storage tank implosion
Fig.4 Cloud chart of pressure distribution of storage tank at different times
观测点环向角度
0°(n=1)45°(n=2)90°(n=3)135°(n=4)180°(n=5)
压力比时间比压力比时间比压力比时间比压力比时间比压力比时间比
An /Bn0.212.000.581.582.851.322.741.012.751.12
An /Cn1.420.891.240.943.110.932.710.853.540.86
An /Dn5.820.333.510.474.350.623.130.664.040.71
An /En4.760.164.370.264.400.462.780.423.480.48
Bn /Cn6.660.442.150.591.090.701.020.841.290.77
Bn /Dn27.470.166.030.301.520.471.160.651.470.63
Bn /En22.440.087.540.161.550.341.030.431.260.43
Table 1 Ratio of peak pressure and its occurrence time at each observation point of storage tank
Fig.5 Cloud chart of stress distribution of storage tank at different times
观测点环向角度
0°(n=1)45°(n=2)90°(n=3)135°(n=4)180°(n=5)
时间/ms应力/MPa时间/ms应力/MPa时间/ms应力/MPa时间/ms应力/MPa时间/ms应力/MPa
An3.243.26.043.413.2216.018.2212.020.6198.0
Bn1.6143.03.827.010.079.018.0139.018.4176.0
Cn3.684.56.475.914.256.921.4154.024.0183.0
Dn9.851.512.820.921.2105.027.688.529.038.1
En20.483.423.474.829.0167.043.073.843.030.3
Table 2 Peak pressure occurrence time and corresponding stress at each observation point of storage tank
Fig.6 Crack propagation of storage tank at different times
裂纹初始出现时刻穿过液位时刻终止时刻
时刻/ms端点高度/m长度/m时刻/ms高度/m长度/m时刻/ms高度/m长度/m
裂纹1(30°)8.49.92(上)1.9716.412.48(上)6.6723.212.488.74
7.95(下)5.72(下)3.76
裂纹2(60°)9.09.89(上)1.5016.212.37(上)6.6624.412.4811.96
8.93(下)5.71(下)0.54
Table 3 Crack lengths at different times
判别条件评价指标容积/m3
1 0003 0005 000

第1条

判别条件

最小峰值压力比(除An /Bn 外)0.721.021.070.831.201.230.951.311.43
峰值压力出现时间比0.840.920.611.020.440.97
应力/MPa320
是否具备弱顶性能

第2条

判别条件

裂纹上端点高度/m12.4812.48017.5016.47017.4617.840
裂纹下端点高度/m0.320.54000000.330
裂纹长度/m12.1611.9617.5016.4717.4617.51
液位高度/m0.505.750.508.400.508.40
裂纹下端点与液位高度差值/m-0.18-5.21-0.50-8.40-0.50-8.07
是否具备弱顶性能
基于多判别条件的弱顶性能评价结果
Table 4 Evaluation results of weak roof performance of storage tank under different influencing factors
Fig.7 Changing curves of weak roof performance of storage tank with volume and liquid level-height
Fig.8 Schematic diagram of optimization process of non-weak roof storage tank
容积/m3L1/mT1/mL2/mT2/m液位高度/m防护圈1安装高度/m防护圈2安装高度/m
1 0000.0750.0080.0750.0085.759.1257.250
3 0000.1050.0080.0630.0088.4013.10010.400
5 0000.1300.0080.0800.0088.4013.10010.400
Table 5 Dimensions of protective rings for storage tanks with different volumes
Table 6 Comparison of weak roof performance evaluation results of storage tank before and after optimization
[1]   刘巨保,门建斌,丁宇奇,等. 2万m3立式网壳顶储罐破坏分析及弱顶性能评价[J].石油化工设备,2013,42(3):48-53.
LIU J B, MENG J B, DING Y Q, et al. Failure analysis and evaluation for weak roof performance of 2×104 m3 vertical latticed shell roof storage tank[J]. Petro-chemical Equipment, 2013, 42(3): 48-53.
[2]   丁宇奇.立式拱顶储罐超压破坏机理与弱顶结构研究[D].大庆:东北石油大学,2014:111-115.
DING Y Q. Research on broken mechanism of vertical dome roof tank overpressure and weak roof structure[D]. Daqing: Northeast Petroleum University, 2014: 111-115.
[3]   DING Y, DAI Z, LU Y, et al. The influence of tank roof form on weak roof performance based on preventing environmental pollution[J]. Ekoloji, 2019, 28(107): 3773-3781.
[4]   李成兵,雷鹏.5000 m3立式拱顶储罐应力分析与弱顶性能评价[J].工程设计学报,2020,27(2):182-190.
LI C B, LEI P. Stress analysis and weak roof performance evaluation for 5000 m3 vertical dome storage tank[J]. Chinese Journal of Engineering Design, 2020, 27(2): 182-190.
[5]   万昊天.固定顶储罐弱壁防护结构设计及优化研究[D].大连:大连理工大学,2015:4-13.
WAN H T. Design and optimization of weak wall protective structure of fixed roof storage tank[D]. Dalian: Dalian University of Technology, 2015: 4-13.
[6]   刘博,唐辉永,张学恭.微内压大型立式圆筒储罐设计原理及应用分析[J].化工设备与管道,2014,51(5):1-4. doi:10.3969/j.issn.1009-3281.2014.05.001
LIU B, TANG H Y, ZHANG X G. Design principle and application analysis of large vertical cylindrical tank subjected to minor internal pressure[J]. Process Equipment & Piping, 2014, 51(5): 1-4.
doi: 10.3969/j.issn.1009-3281.2014.05.001
[7]   丁旭明,李明波.设计压力对储罐结构设计的影响[J].油气储运,2018,37(5):563-567.
DING X M, LI M B. The effect of design pressure on tank structure design[J]. Oil & Gas Storage and Transportation, 2018, 37(5): 563-567.
[8]   万昊天,喻健良,焦国栋.静压下固定顶储罐弱壁结构保护性能研究[J].河南科技,2017(9):71-74. doi:10.3969/j.issn.1003-5168.2017.09.036
WAN H T, YU J L, JIAO G D. Study of weak wall structure of fixed roof storage tank under static pressure[J]. Henan Science and Technology, 2017(9): 71-74.
doi: 10.3969/j.issn.1003-5168.2017.09.036
[9]   刘巨保,许蕴博.基于GB 50341标准设计的立式拱顶储罐弱顶结构分析与评价[J].化工机械,2011,38(4):423-427.
LIU J B, XU Y B. Weak-roof structure analysis and evaluation of vertical dome tank based on GB 50341[J]. Chemical Engineering & Machinery, 2011, 38(4): 423-427.
[10]   丁宇奇,刘巨保,武铜柱,等.基于三维模型的立式拱顶储罐应力分析与弱顶影响因素分析[J].压力容器,2011,28(12):11-17. doi:10.3969/j.issn.1001-4837.2011.12.003
DING Y Q, LIU J B, WU T Z, et al. Stress analysis of vertical dome tank and influencing factors analysis of weak roof based on three-dimensional model[J]. Pressure Vessel Technology, 2011, 28(12): 11-17.
doi: 10.3969/j.issn.1001-4837.2011.12.003
[11]   张宇.池火灾场景下拱顶油罐失效过程的数值模拟与实验研究[D].鞍山:辽宁科技大学,2021:17-18.
ZHANG Y. Numerical simulation and experimental study on failure process of dome roof oil tank under pool fire scenario[D]. Anshan: University of Science and Technology Liaoning, 2021: 17-18.
[12]   李永华.事故多米诺效应与罐区安全设计探讨[J]. 安全、健康和环境,2018,18(11):17-20.
LI Y H. Domino effect of accidents and safety design of tank farms[J]. Safety Health & Environment, 2018, 18(11): 17-20.
[13]   戴希明.储罐内爆破坏形式预测与弱顶优化方法研究[D].大庆:东北石油大学,2019:66-73.
DAI X M. Study on prediction of damage form of blasting in storage tank and optimization method of weak roof[D]. Daqing: Northeast Petroleum University, 2019: 66-73.
[14]   DING Y, LU Y, CHEN Z. Study on the influence of frangible roof performance of tank explosion under multi-field coupling[J]. Journal of Failure Analysis and Prevention, 2019, 19(5): 1455-1463.
[15]   DING Y, ZHOU H, LU Y, et al. Design of foot bolts for weak roof storage tanks to avoid environmental pollution[J]. Ekoloji, 2019, 28(107): 3643-3651.
[16]   孙延廷.3000 m3立式固定顶储罐设计方法与罐顶失效分析[D].大庆:东北石油大学,2014:10-23.
SUN Y T. The analysis and design methods of 3000 m3 vertical dome tanks and analysis of roof failure[D]. Daqing: Northeast Petroleum University, 2014: 10-23.
[17]   侯海量,朱锡,李伟,等.舱内爆炸冲击载荷特性实验研究[J].船舶力学,2010,14(8):901-907. doi:10.3969/j.issn.1007-7294.2010.08.011
HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin[J]. Journal of Ship Mechanics, 2010, 14(8): 901-907.
doi: 10.3969/j.issn.1007-7294.2010.08.011
[18]   LU Y, XU K. Prediction of debris launch velocity of vented concrete structures under internal blast[J]. International Journal of Impact Engineering, 2007, 34(11): 1753-1767.
[19]   CHAN P C, KLEIN H H. A study of blast effects inside an enclosure[J]. Journal of Fluids Engineering, 1994, 116(3): 450-455.
[20]   芦烨,丁宇奇,王学勇,等.考虑温压载荷耦合作用的储罐内爆破坏与辐射区域[J].化工机械,2021,48(6):839-846. doi:10.3969/j.issn.0254-6094.2021.06.010
LU Y, DING Y Q, WANG X Y, et al. Internal explosion damage and radiation area of storage tank considering coupling effect of temperature and pressure[J]. Chemical Engineering & Machinery, 2021, 48(6): 839-846.
doi: 10.3969/j.issn.0254-6094.2021.06.010
[21]   苗婷,苗张木,冷晓畅.基于内聚力模型的X65管线钢稳定裂纹扩展研究[J].船舶力学,2017,21(2):192-200. doi:10.3969/j.issn.1007-7294.2017.02.009
MIAO T, MIAO Z M, LENG X C. Study of stable crack growth through X65QO pipeline steel using cohesive zone modeling[J]. Journal of Ship Mechanics, 2017, 21(2): 192-200.
doi: 10.3969/j.issn.1007-7294.2017.02.009
[22]   傅伟庆,张文伟,孙正国,等. 立式圆筒形钢制焊接油罐设计规范: [S].北京:中国计划出版社,2014:17-145.
FU W Q, ZHANG W W, SUN Z G, et al. Code for design of vertical cylindrical welded steel oil tanks: [S]. Beijing: China Planning Press, 2014: 17-145.
[23]   ZHANG R, JIA J, WANG H, et al. Shock response analysis of a large LNG storage tank under blast loads[J]. KSCE Journal of Civil Engineering, 2018, 22(9): 3419-3429.
[24]   王晓辉,褚学森,冯光.基于ABAQUS显式CEL方法的球体入水数值研究[J].船舶力学,2018,22(7):838-844. doi:10.3969/j.issn.1007-7294.2018.07.007
WANG X H, CHU X S, FENG G. Numerical simulation of sphere’s water-entry based on coupled Eulerian-Lagrangian method[J]. Journal of Ship Mechanics, 2018, 22(7): 838-844.
doi: 10.3969/j.issn.1007-7294.2018.07.007
[25]   RASAEE S, MIRZAEI A H. Constitutive modeling of 2024 aluminum alloy based on the Johnson-Cook model[J]. Transactions of the Indian Institute of Metals, 2019, 72(4): 1023-1030.
[26]   XU H, ZHAO B, LU X, et al. A modified Johnson-Cook constitutive model for the compressive flow behaviors of the SnSbCu alloy at high strain rates[J]. Journal of Materials Engineering and Performance, 2019, 28(11): 6958-6968.
[27]   王博,刘雄飞,胡佳,等.缝内暂堵转向压裂数值模拟方法[J].石油科学通报,2021,6(2):262-271. doi:10.3969/j.issn.2096-1693.2021.02.020
WANG B, LIU X F, HU J, et al. Numerical simulation of in-fracture temporary plugging and diverting fracturing (ITPDF) [J]. Petroleum Science Bulletin, 2021, 6(2): 262-271.
doi: 10.3969/j.issn.2096-1693.2021.02.020
[1] Jia ZHANG,Zhaoming ZHOU,Zhanghua LIAN,Kai LI,Zhi CHEN. Research on crack detection of butt welds in the cladding panel of spent fuel pool[J]. Chin J Eng Design, 2023, 30(3): 372-379.
[2] TAO Xiao-dong, GUO An-fu, LI Hui, HAN Wei, LI Wan-cai, LI Tao. Performance analysis and optimization of disc ditcher based on sensitivity analysis[J]. Chin J Eng Design, 2022, 29(1): 59-65.
[3] HAO Chun-yong, WANG Dong-liang, ZHENG Jin-yang, XU Ping, GU Chao-hua. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chin J Eng Design, 2021, 28(5): 594-601.
[4] LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank[J]. Chin J Eng Design, 2020, 27(2): 182-190.
[5] HE Yu-min, CHENG Wan-ying, ZHU Bao-hui, XU Huan-huan. Study on the measurement method of crack flexibility for rectangular beam[J]. Chin J Eng Design, 2017, 24(6): 618-623.
[6] REN Yuan, ZHANG Cheng-cheng, GAO Jing-yun, LI Meng-guang. Finite element simulation for the growth of the sealing labyrinth crack in turbine disc[J]. Chin J Eng Design, 2016, 23(2): 152-159,165.
[7] LI Xue-peng, WANG Ai-lun. Research on performance degradation of combined rotor considering the microcrack on the rod caused by frequent start-up and stop-down[J]. Chin J Eng Design, 2015, 22(2): 129-136.
[8] LI Xue-Peng, WANG Ai-Lun. Research on performance degradation of combined rotor considering the fatigue crack in the rod[J]. Chin J Eng Design, 2014, 21(4): 382-388.
[9] WANG Qian-Qian, ZHANG Yi-Min, LV Hao . Parameter sensitivity analysis of gear teeth life with crack in regard to surface pitting based on reliability model[J]. Chin J Eng Design, 2013, 20(4): 282-286.
[10] CAO Zhou-Hong, LIAN Ji-Jian, LIU Xiao-Ping. Finite element simulation of a castle structure and influence of the construction procedure on the floor stress[J]. Chin J Eng Design, 2013, 20(4): 326-331.
[11] ZHANG Yan-Lin, ZHANG Yi-Min, ZHANG Yan-Fang, JIN Ya-Juan. Reliability analysis of fatigue propagation life for crack emanating from adjacent hole with non-normal random parameters[J]. Chin J Eng Design, 2010, 17(6): 415-419.
[12] ZHAO Jin-Fang, XIE Li-Yang, LIU Jian-Zhong, LI Bing. Finite element simulation of fatigue crack growth of MSD with multiple collinear holes on finite plate[J]. Chin J Eng Design, 2009, 16(4): 256-260.
[13] JIN Ya-Juan, ZHANG Yi-Min, ZHANG Yan-Lin, WANG Xin-Gang. Reliability analysis of turbine disk crack propagation life with arbitrary distribution parameters[J]. Chin J Eng Design, 2009, 16(3): 196-199.
[14] ZHAO Yang, FAN Bo. Stability analysis of tapered floating-roof steel storage tanks under measured differential settlement[J]. Chin J Eng Design, 2008, 15(6): 472-476.
[15] HE Jia-Sheng,ZHU Guang-Qiang,ZHU Xiao-Ming,LU Yuan-Ming,WU Jian-Ping. Finite element analysis for stress intensity factor of semi-elliptical surface crack in circular tube under torsion and bending[J]. Chin J Eng Design, 2007, 14(2): 153-159.