Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (2): 152-159,165    DOI: 10.3785/j.issn.1006-754X.2016.02.008
    
Finite element simulation for the growth of the sealing labyrinth crack in turbine disc
REN Yuan1, ZHANG Cheng-cheng1, GAO Jing-yun1, LI Meng-guang2
1. Shanghai Center of Research for Commercial Aircraft Engine Engineering Techniques, AVIC (Aviation Industry Corporation of China) Commercial Aircraft Engine Co., Ltd., Shanghai 200240, China;
2. Multiangle Virtual Technology Incorporation, Shanghai 200233, China
Download: HTML     PDF(4559KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In order to investigate the growth mechanism of sealing labyrinth crack, the propagation process, which started from the tooth tip and stops when the crack was about to penetrate through the labyrinth seal ring, was numerically simulated. The finite element model of the turbine disc with a sealing labyrinth crack was established using submodeling method, and the stress intensity factors along the crack front were calculated with M integral. After determining the local direction and extension distance of each node along the sealing labyrinth crack front, the new crack front was fitted with spline curve, and then self-adaption mesh generation was used for updating the finite elements in the vicinity of the crack. The results of numerical simulation indicated that the top of the root fillet could be regarded as the demarcation point between the slow crack-growth stage and the fast crack-growth stage. The sealing labyrinth crack grew with a low velocity as a penetrating crack before the demarcation point, and it began to transfer to a surface crack with a much higher average velocity after the demarcation point. The crack growth life before the demarcation point was several times longer than the life after the demarcation point. From the results of numerical simulation,it can also be concluded that both increasing the radius of root fillet and reducing the space between adjacent sealing labyrinths are helpful for resisting the growth of the sealing labyrinth crack.

Key wordssealing labyrinth crack      turbine disc      crack growth      stress intensity factor      fatigue life     
Received: 19 October 2015      Published: 28 April 2016
CLC:  V231.95  
  O346.2  
Cite this article:

REN Yuan, ZHANG Cheng-cheng, GAO Jing-yun, LI Meng-guang. Finite element simulation for the growth of the sealing labyrinth crack in turbine disc. Chinese Journal of Engineering Design, 2016, 23(2): 152-159,165.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.02.008     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I2/152


涡轮盘篦齿裂纹扩展的有限元数值模拟

为了详细考察篦齿裂纹的扩展规律,对篦齿裂纹从齿尖一直扩展到即将完全穿透篦齿环的过程进行了数值模拟.含篦齿裂纹的涡轮盘有限元模型采用子模型法建立,使用M积分计算裂纹前沿的应力强度因子;在确定篦齿裂纹前沿每一节点处的局部扩展方向及距离后,通过样条曲线拟合出新裂纹前沿,并依靠自适应网格划分实现裂纹区有限元网格的更新.数值模拟结果表明,篦齿根部过渡圆角顶部可以视为裂纹缓慢扩展阶段与快速扩展阶段的分界点,在此之前篦齿裂纹以穿透型裂纹的形态以较低的速度进行扩展,在此之后篦齿裂纹开始向表面裂纹进行转化,并且平均扩展速度大大增加,分界点前的裂纹扩展寿命是之后的数倍.此外,由数值模拟结果还可以发现,增大篦齿根部过渡圆角半径以及减小相邻篦齿的间距,均有助于延缓篦齿裂纹的扩展.

关键词: 篦齿裂纹,  涡轮盘,  裂纹扩展,  应力强度因子,  疲劳寿命 
[1] 黄彬彬.航空发动机篦齿封严特性数值模拟研究[D].北京:北京交通大学机械与电子控制工程学院,2014:2-9. HUANG Bin-bin.Numerical simulation of leakage character of aero-engine labyrinth seals [D].Beijing:Beijing Jiaotong University,School of Mechanical, Electronic & Control Engineering,2014:2-9.

[2] 陶春虎,钟培道,王仁智,等.航空发动机转动部件的失效分析与预防[M].北京:国防工业出版社,2000:138-147. TAO Chun-hu,ZHONG Pei-dao,WANG Ren-zhi,et al.Failure analysis and prevention for rotor in aero-engine [M].Beijing:National Defense Industry Press,2000:138-147.

[3] 龚梦贤,王卫国,古远兴,等.某发动机I级涡轮盘篦齿裂纹故障分析[J].燃气涡轮试验与研究,1999,12(4):34-39. GONG Meng-xian,WANG Wei-guo,GU Yuan-xing,et al.Failure analysis of sealing labyrinth crack for the first stage turbine disc in an aero-engine [J].Gas Turbine Experiment and Research,1999,12(4):34-39.

[4] 唐光辉.某乙型发动机Ⅰ级涡轮盘封严篦齿裂纹故障分析及维修措施[J].航空发动机,1995,21(4):50-58. TANG Guang-hui.Failure analysis and maintenance measures of sealing labyrinth crack for the first stage turbine disc in a type-B areo-engine [J].Aeroengine,1995,21(4):50-58.

[5] 李运菊,孙智军.某发动机高压Ⅱ级涡轮盘封严篦齿裂纹分析[J].失效分析与预防,2006,1(3):27-30. LI Yun-ju,SUN Zhi-jun.Crack analysis of sealing labyrinth on high-pressure turbine disc Ⅱ in an aero-engine [J].Failure Analysis and Prevention,2006,1(3):27-30.

[6] 田武刚,潘孟春,罗飞路,等.某型航空发动机篦齿盘裂纹的原位涡流检测[J].测试技术学报,2008,22(3):241-244. TIAN Wu-gang,PAN Meng-chun,LUO Fei-lu,et al.In situ eddy current testing for the cracks in an aeroengine labyrinth disc [J].Journal of Test and Measurement Technology,2008,22(3):241-244.

[7] 卓正敏,李文闯.涡轮盘篦齿补焊工艺研究[J].金属加工(热加工),2013(2):74-75. ZHUO Zheng-ming,LI Wen-chuang.Research of repair welding technology for the sealing labyrinth in a turbine disc [J].Machinist Metal Forming,2013(2):74-75.

[8] YAU J F,WANG S S,CORTEN H T.A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity [J].Journal of Applied Mechanics,1980,47(2):335-341.

[9] WAWRZYNEK P A,CARTER B J,BANKS-SILLS L.The M-integral for computing stress intensity factors in generally anisotropic materials:NASA/CR-2005-214006[R].Alabama:Marshall Space Flight Center,2005.

[10] HOMBAL V K,MAHADEVAN S.Surrogate modeling of 3D crack growth [J].International Journal of Fatigue,2013,47(1):90-99.

[11] WAWRZYNEK P A,CARTER B J,INGRAFFEA A R.Advances in simulation of arbitrary 3D crack growth using FRANC3D/NG[C]// Proceedings of the 12th International Conference on Fracture.Ottawa,Jul.12-17,2009.

[12] CARTER B J,SCHENCK E C,WAWRZYNEK P A,et al.Three-dimensional simulation of fretting crack nucleation and growth [J].Engineering Fracture Mechanics,2012,96(1):447-460.

[13] 郦正能,关志东,张纪奎,等.应用断裂力学[M].北京:北京航空航天大学出版社,2012:64-73. LI Zheng-neng,GUAN Zhi-dong,ZHANG Ji-kui,et al.Application fracture mechanics [M].Beijing:Beihang University Press,2012:64-73.

[14] FAC. FRANC3D reference manual[EB/OL]. (2012-05-08)[2015-07-15]. http://www.franc3d.com/wp-content/uploads/2012/05/FRANC3D_V7_Reference.pdf.

[15] BUCZEK M B,HERAKOVICH C T.A normal stress criterion for crack extension direction in orthotropic composite materials [J].Journal of Composite Materials,1985,19(6):544-553.

[16] 航空发动机设计用材料数据手册编委会.航空发动机设计用材料数据手册(第3册)[M].北京:航空工业出版社,2008:166-170. The Editorial Board of Material Data Handbook for Design of Aero-engines.Material data handbook for design of aero-engines (Volume 3) [M].Beijing:Aviation Industry Press,2008:166-170.

[17] 赵志平,李有堂,党延祖.金属材料疲劳设计及裂纹扩展规律研究与应用[J].石油矿场机械,2010,39(9):38-41. ZHAO Zhi-ping,LI You-tang,DANG Yan-zu.Study and application on fatigue crack propagation law and design of metal material [J].Oil Field Equipment,2010,39(9):38-41.

[18] 倪向贵,李新亮,王秀喜.疲劳裂纹扩展规律Paris公式的一般修正及应用[J].压力容器,2006,23(12):8-15. NI Xiang-gui,LI Xin-liang,WANG Xiu-xi.General modification and application of the Paris law for fatigue crack propagation [J].Pressure Vessel Technology,2006,23(12):8-15.
[1] HAO Chun-yong, WANG Dong-liang, ZHENG Jin-yang, XU Ping, GU Chao-hua. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chinese Journal of Engineering Design, 2021, 28(5): 594-601.
[2] CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan. Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate[J]. Chinese Journal of Engineering Design, 2019, 26(6): 658-665.
[3] LI Song-mei, ZHENG Zhe, LI Shuai-shuai, CHANG De-gong. Structure and fatigue life analysis of damping type tripod universal joint[J]. Chinese Journal of Engineering Design, 2019, 26(5): 520-526.
[4] WANG Gang, HUANG Ling-hui, LIU Jin-jun. Research on dynamic stress and fatigue life for ultra-deep mine hoist drum[J]. Chinese Journal of Engineering Design, 2018, 25(6): 703-710.
[5] CAI Yu-qiang, ZHU Dong-sheng. Analysis of crankshaft fatigue life of high-speed crank press based on dynamics simulation[J]. Chinese Journal of Engineering Design, 2017, 24(6): 680-686.
[6] ZHANG Hai-biao, WANG Ai-lun. Research on performance degradation characteristic of combined rotor considering turbine discs creep[J]. Chinese Journal of Engineering Design, 2016, 23(5): 417-423,452.
[7] SHEN Jie-bin, TANG Dong-lin. Study of field size parameter in stress field intensity approach[J]. Chinese Journal of Engineering Design, 2016, 23(1): 22-27.
[8] LIU Zhe, TAO Feng-he, JIA Chang-zhi. Fatigue life prediction on drive shaft of tracked vehicle and structure optimization[J]. Chinese Journal of Engineering Design, 2015, 22(5): 431-437.
[9] ZHANG Qiang, WANG Hai-jian, HU Nan. Study on injury and fatigue life forecast of gantry crane's girder under rising load[J]. Chinese Journal of Engineering Design, 2015, 22(5): 461-468.
[10] ZHAO Chun-jiang, XIONG Jie, YU Xiao-kai, HUANG Qing-xue, GE Shi-dong. Analysis on the influence of inertial load on the optimal preload of high-speed angular contact ball bearing[J]. Chinese Journal of Engineering Design, 2015, 22(2): 150-154.
[11] MAO Jun, JIANG Peng, XIE Miao. Force analysis and life prediction of hydraulic rod on drum shearer under the condition of oblique cutting[J]. Chinese Journal of Engineering Design, 2015, 22(1): 95-100.
[12] ZHAO Li-juan,LI Minghao. Analysis of the shearer´s rocker arm shell based on the multi-field coupling[J]. Chinese Journal of Engineering Design, 2014, 21(3): 235-239.
[13] LI Cheng-Lin, HAN Zhen-Nan, HUO Jun-Jie, SONG Sha-Sha. Fatigue life analysis of semi-trailer frame based on FEM[J]. Chinese Journal of Engineering Design, 2013, 20(5): 414-418.
[14] CHEN Yong-Liang, LIU Shuang, HAN Yao, GU Pei-Hua. Fatigue life robust design of clamping disc springs fora shipbuilding hydraulic press head[J]. Chinese Journal of Engineering Design, 2012, 19(3): 161-165.
[15] ZHANG Yan-Lin, ZHANG Yi-Min, ZHANG Yan-Fang, JIN Ya-Juan. Reliability analysis of fatigue propagation life for crack emanating from adjacent hole with non-normal random parameters[J]. Chinese Journal of Engineering Design, 2010, 17(6): 415-419.