Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (6): 658-665    DOI: 10.3785/j.issn.1006-754X.2019.00.013
Design for Quality     
Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate
CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
Download: HTML     PDF(3392KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The vibrator is the key device for the excitation of the seismic signal of vibroseis. Long-term wide and high-frequency seismic wave excitation causes cracks or even fatigue failure in the welded part of the vibrator baseplate, which will not only greatly reduce the working life of the baseplate, but also seriously affect the source signal quality. Therefore, the micromorphology of the baseplate cracking fracture was analyzed. The damage characteristics and crack propagation law of the fatigue damage area of the baseplate were grasped, which revealed the damage mechanism of the baseplate cracking fracture. According to the fatigue damage mode and characteristics of the baseplate, the "three-point bending" fatigue test of the baseplate was carried out, and the S-N curve of the baseplate was fitted. The fatigue life of the baseplate was predicted, and compared with the fatigue life calculated by the fracture mechanics method. The results showed that the S-N curve method modified by fatigue test parameters was more accurate than the fracture mechanics method, and it could accurately predict the working life of the seismic vibrator baseplate. The research results provide scientific theoretical support for prolonging the fatigue life of seismic vibrator baseplate and enhancing its reliability, which will significantly enhance the research and development level and international competitiveness of China's oil and gas exploration technology as well as the related engineering equipment.

Key wordsvibrator baseplate      damage mechanism      fatigue life      fatigue test analysis     
Received: 26 March 2019      Published: 28 December 2019
CLC:  TH 122  
Cite this article:

CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan. Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate. Chinese Journal of Engineering Design, 2019, 26(6): 658-665.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.00.013     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I6/658


震源振动器平板损伤机理及其疲劳寿命预测研究

振动器是可控震源地震信号激发的关键装置,长期宽、高频地震波激发致使振动器平板焊接部位出现裂纹甚至疲劳失效,这不仅会大大减短平板工作寿命,而且严重影响震源信号质量。由此,对平板开裂断口的微观形貌进行分析,掌握平板疲劳损伤区域内损伤特征、裂纹扩展规律,揭示平板开裂断口损伤机理。针对平板疲劳损伤模式和特点,开展平板“三点弯曲”疲劳试验,拟合平板S—N曲线,预测平板疲劳寿命,并与采用断裂力学法的疲劳寿命计算结果进行比较。结果表明,经疲劳试验参数修正的S—N曲线法的精度高于断裂力学法,可准确预测震源振动器平板的工作寿命。研究成果为延长震源振动器平板的疲劳寿命、增强其可靠性提供了科学的理论支持,有助于提高我国油气勘探技术及相关工程装备的研发水平和国际竞争力。

关键词: 振动器平板,  损伤机理,  疲劳寿命,  疲劳试验分析 
[1] 陶知非.改善可控震源高频信号输出品质的探讨[J].物探装备,2008,18(2):71-77. doi: 10.3969/j.issn.1671-0657.2008.02.001 TAO Zhi-fei. Study on improving quality of high-frequency output signal in vibroseis[J]. Equipment for Geophysical, 2008, 18(2): 71-77.
[2] 刘金中,马铁荣.可控震源的发展状况[J].石油科技论坛,2008,27(5):38-42. doi: 10.3969/j.issn.1002-302X.2008.05.007 LIU Jin-zhong, MA Tie-rong. Development of the vibrosies[J]. Oil Forum, 2008, 27(5): 38-42.
[3] WEI Z, PHILIPS T F, HALL M A. Fundamental discussions on seismic vibrators[J]. Geophysics, 2010, 75(6): W13-W25. doi: 10.1190/1.3509162
[4] 周浩,殷凯,禹华军.用有限元的方法找出AHV-Ⅳ364震源平板应力集中位置[J].物探装备,2018,28(1):26-28. doi: 10.3969/j.issn.1671-0657.2018.01.007 ZHOU Hao, YIN Kai, YU Hua-jun. The way to find the stress concentration of AHV-Ⅳ 364 vibroseis with finite element[J]. Equipment for Geophysical Prospecting, 2018, 28 (1): 26-28.
[5] 黄志强,彭珣,李刚.可控震源振动器平板多频响应分析[J].工程设计学报,2017,24(6):648-654. doi: 10.3785/j.issn.1006-754X.2017.06.006 HUANG Zhi-qiang, PENG Xun, LI Gang. Analysis of multi-frequency response of vibroseis vibrator baseplate [J]. Chinese Journal of Engineering Design, 2017, 24(6): 648-654.
[6] 黄志强,丁雅萍,陶知非,等.国内外可控震源振动器平板研究现状与发展方向[J].石油矿场机械,2015,44(6):1-5. doi:10.3969/j.issn.1001-3842.2015.06.001 HUANG Zhi-qiang, DING Ya-ping, TAO Zhi-fei, et al. Research status and development direction of vibroseis at home and abroad[J]. Oil Field Equipment, 2015, 44(6): 1-5.
[7] 马磊,季颖,夏鹏翎.可控震源振动平板设计的研究探讨[J].物探装备,2015,25(5):297-301. doi:10.3969/j.issn.1671-0657.2015.05.005 MA Lei, JI Ying, XIA Peng-ling. Research and discussion on the design of vibroseis plate[J]. Equipment for Geophysical Prospecting, 2015, 25(5): 297-301.
[8] 郝磊.可控震源平板性能研究及改进[D].成都:西南石油大学机电工程学院,2014:39-40. HAO Lei. Study and improvement on the performance of vibroseis[D].Chengdu: Southwest Petroleum University, School of Mechatronic Engineering, 2014: 39-40.
[9] 潘吉明,卢耀祖,周中坚,等. 利用应变实时监测研究后桥疲劳裂纹扩展规律[J].同济大学学报,1999,27(6):745-748. PAN Ji-ming, LU Yao-zu, ZHOU Zhong-jian, et al. Spreading of rear suspension fatigue cracks by strain real-time monitoring[J]. Journal of Tongji University, 1999, 27(6): 745-748.
[10] 王宝艳.抽油机井油管疲劳断裂机理和预防措施的研究[D].杭州:浙江大学机械工程学院,2002:33-37. WANG Bao-yan. Research on mechanism and preventive measures of fatigue fracture of tubing in sucker rod pumping wells[D]. Hangzhou: Zhejiang University, School of Mechanical Engineering, 2002: 33-37.
[11] 王清远,刘永杰.结构金属材料超高周疲劳破坏行为[J].固体力学学报,2010,31(5):496-503. doi:10.19636/j.cnki.cjsm42-1250/o3.2010.05.010 WANG Qing-yuan, LIU Yong-jie. Ultrahigh cycle fatigue failure behavior of structural metal materials[J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 496-503.
[12] 李亚智,张开达,张博平.一种FRP累积损伤模型及其在结构疲劳寿命估算中的应用[J].应用力学学报,2003,20(1):54-58,161. doi: 10.3969/j.issn.1000-4939.2003.01.011 LI Ya-zhi, ZHANG Kai-da, ZHANG Bo-ping. A FRP cumulative damage model and its application in fatigue life estimation of structures[J]. Chinese Journal of Applied Mechanics, 2003, 20(1): 54-58, 161.
[13] 吴富强,姚卫星.一个新的材料疲劳寿命曲线模型[J].中国机械工程,2008,19(13):1634-1637. WU Fu-qiang, YAO Wei-xing. A new model of the fatigue life curve of materials[J]. China Mechanical Engineering, 2008, 19(13): 1634-1637.
[14] 韩磊,孙良杰,王龙,等.均匀网格壁板三点弯曲过程的有限元分析与试验研究[J].塑性工程学报,2018,25(3):23-29. doi:10.3969/j.issn.1007-2012.2018.03.004 HAN Lei, SUN Liang-jie, WANG Long, et al. Finite element analysis and experimental research of three-point bending process for uniform mesh panels[J]. Journal of Plasticity Engineering, 2008, 25(3): 23-29.
[15] 吴少鹏,曹庭维,陈明宇,等.基于三点弯曲试验的ATB-25弯拉特性的研究[J].公路交通科技,2008,25(10):13-16. doi:10.3969/j.issn.1002-0268.2008.10.004 WU Shao-peng, CAO Ting-wei, CHEN Ming-yu, et al. Research on flexural-tension properties of ATB-25 using three-point bending test[J]. Journal of Highway and Transportation Research and Development, 2008, 25(10): 13-16.
[16] 赵永翔,高庆,王金诺.估计三种常用应力—寿命模型概率设计S—N曲线的统一方法[J].核动力工程,2001,22(1):43-51. ZHAO Yong-xiang, GAO Qing, WANG Jin-nuo. Uniffied approach for estimating the probability designing S-N curves of three common used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 43-51.
[17] CUI Wei-cheng. A preliminary review of recent developments in life prediction methods of marine structures[J]. Journal of Ship Mechanics, 1999, 3(6): 55-79.
[18] 赵少汴.抗疲劳设计[M].北京:机械工业出版社,1997:47-48. ZHAO Shao-bian. Anti-fatigue design [M]. Beijing: China Machine Press, 1997: 47-48.
[19] 邵永波,LIE Seng-tjhen.K节点应力集中系数的试验和数值研究方法[J].工程力学,2006,23(S1):79-85. doi:10.3969/j.issn.1000-4750.2006.z1.016 SHAO Yong-bo, LIE Seng-tjhen. Expermental and numerical studies of the stress concentration factor (SCF) of tubular K-joints[J]. Engineering Mechanics, 2006, 23(S1): 79-85.
[1] HAO Chun-yong, WANG Dong-liang, ZHENG Jin-yang, XU Ping, GU Chao-hua. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chinese Journal of Engineering Design, 2021, 28(5): 594-601.
[2] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
[3] HUANG Chuan-hui, ZHANG Ning, LIU Lei. Comparative analysis of performance of isolator of different materials in slewing bearing[J]. Chinese Journal of Engineering Design, 2020, 27(1): 128-134.
[4] LI Song-mei, ZHENG Zhe, LI Shuai-shuai, CHANG De-gong. Structure and fatigue life analysis of damping type tripod universal joint[J]. Chinese Journal of Engineering Design, 2019, 26(5): 520-526.
[5] WANG Gang, HUANG Ling-hui, LIU Jin-jun. Research on dynamic stress and fatigue life for ultra-deep mine hoist drum[J]. Chinese Journal of Engineering Design, 2018, 25(6): 703-710.
[6] CAI Yu-qiang, ZHU Dong-sheng. Analysis of crankshaft fatigue life of high-speed crank press based on dynamics simulation[J]. Chinese Journal of Engineering Design, 2017, 24(6): 680-686.
[7] HUANG Zhi-qiang, PENG Xun, LI Gang. Analysis of multi-frequency response of vibroseis vibrator baseplate[J]. Chinese Journal of Engineering Design, 2017, 24(6): 648-654.
[8] REN Yuan, ZHANG Cheng-cheng, GAO Jing-yun, LI Meng-guang. Finite element simulation for the growth of the sealing labyrinth crack in turbine disc[J]. Chinese Journal of Engineering Design, 2016, 23(2): 152-159,165.
[9] SHEN Jie-bin, TANG Dong-lin. Study of field size parameter in stress field intensity approach[J]. Chinese Journal of Engineering Design, 2016, 23(1): 22-27.
[10] LIU Zhe, TAO Feng-he, JIA Chang-zhi. Fatigue life prediction on drive shaft of tracked vehicle and structure optimization[J]. Chinese Journal of Engineering Design, 2015, 22(5): 431-437.
[11] ZHANG Qiang, WANG Hai-jian, HU Nan. Study on injury and fatigue life forecast of gantry crane's girder under rising load[J]. Chinese Journal of Engineering Design, 2015, 22(5): 461-468.
[12] ZHAO Chun-jiang, XIONG Jie, YU Xiao-kai, HUANG Qing-xue, GE Shi-dong. Analysis on the influence of inertial load on the optimal preload of high-speed angular contact ball bearing[J]. Chinese Journal of Engineering Design, 2015, 22(2): 150-154.
[13] MAO Jun, JIANG Peng, XIE Miao. Force analysis and life prediction of hydraulic rod on drum shearer under the condition of oblique cutting[J]. Chinese Journal of Engineering Design, 2015, 22(1): 95-100.
[14] ZHAO Li-juan,LI Minghao. Analysis of the shearer´s rocker arm shell based on the multi-field coupling[J]. Chinese Journal of Engineering Design, 2014, 21(3): 235-239.
[15] LI Cheng-Lin, HAN Zhen-Nan, HUO Jun-Jie, SONG Sha-Sha. Fatigue life analysis of semi-trailer frame based on FEM[J]. Chinese Journal of Engineering Design, 2013, 20(5): 414-418.