Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (6): 652-657    DOI: 10.3785/j.issn.1006-754X.2019.00.010
Design for Quality     
Research on oil film thickness online monitoring for thrust bearing of large hydraulic generating units
FENG Wei1, LI Mei-wei2, HE Shi-zhong1, XIE Xiao-peng2
1.Guangzhou Mechanical Engineering Research Institute Co., Ltd., Guangzhou 510700, China
2.School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Download: HTML     PDF(1653KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The oil film thickness is an important parameter that reflects the operating status of thrust bearings. The real-time online monitoring of the oil film thickness is helpful to achieve stable operation of thrust bearings. Taking the thrust bearing of a large hydraulic generating unit as an example, combining the Reynolds equation and the oil film thickness equation of its lubricating fluid, the finite difference method was used to analyze the change law of the oil film thickness and pressure distribution of the thrust bearing under different loads and different rotational speeds, and a real-time online monitoring method of oil film thickness was designed. The theoretical analysis results showed that when the rotational speed was constant, the oil film thickness of the thrust bearing first increased with the increase of the load, and after reaching the peak value, the oil film thickness decreased with the increase of the load. When the load was constant, the oil film thickness increased with the increase of the rotational speed. The theoretical analysis conclusion was in complete agreement with the online monitoring data of oil film thickness for the large hydraulic generating unit. The reliability of the proposed online monitoring method of oil film thickness is verified, which provides a scientific basis for diagnosing the operating state of the thrust bearing.

Key wordsthrust bearing      Reynolds equation      finite-difference method      oil film thickness      online monitoring     
Received: 10 September 2019      Published: 28 December 2019
CLC:  TH 117  
Cite this article:

FENG Wei, LI Mei-wei, HE Shi-zhong, XIE Xiao-peng. Research on oil film thickness online monitoring for thrust bearing of large hydraulic generating units. Chinese Journal of Engineering Design, 2019, 26(6): 652-657.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.00.010     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I6/652


大型水轮机组推力轴承油膜厚度在线监测研究

油膜厚度是反映推力轴承运行状态的重要参数,对油膜厚度进行实时在线监测有助于实现推力轴承的稳定运行。以某大型水轮机组推力轴承为例,结合其润滑流体的雷诺方程和油膜厚度方程,利用有限差分法分析了不同载荷和不同转速下推力轴承油膜厚度和压力分布的变化规律,并设计了一种油膜厚度实时在线监测方法。理论分析结果表明,当转速一定时,推力轴承油膜厚度先随着载荷的增大而增大,达到峰值后,随着载荷的增大而减小;当载荷一定时,油膜厚度随着转速的增大而增大。理论分析结果与该水轮机组推力轴承油膜厚度的在线监测数据完全吻合,验证了提出的油膜厚度在线监测方法的可靠性,为推力轴承运行状态的诊断提供了科学依据。

关键词: 推力轴承,  雷诺方程,  有限差分法,  油膜厚度,  在线监测 
[1] 王林. 大型扇形可倾瓦推力轴承润滑性能研究[D]. 哈尔滨:哈尔滨理工大学机械动力工程学院,2018:1-5. WANG Lin. Study on lubrication performance of large titling-pad thrust bearing[D]. Harbin: Harbin University of Science and Technology, School of Mechanical and Power Engineering, 2018: 1-5.
[2] 刘晓亭, 刘昱. 大型水电机组推力轴承运行稳定性及故障诊断[J]. 水力发电,2002(11):48-51. doi:10.3969/j.issn.0559-9342.2002.11.015 LIU Xiao-ting, LIU Yu. Operation stability and its fault diagnosis of the thrust bearing of large-sized hydrogenating set[J]. Water Power, 2002(11): 48-51.
[3] LEOPARD A J. Tilting pad bearings-limits of operation[J]. Lubrication Engineering, 1975, 32(12): 637-644. doi:10.5402/2013/732790
[4] 袁永恒, 董秀成, 郑海春, 等. 基于LabVIEW的便携式推力轴承数据采集系统设计[J]. 计算机测量与控制, 2016,24(5):186-189. doi:10.16526/j.cnki.11-4762/tp.2016.05.053 YUAN Yong-heng, DONG Xiu-cheng, ZHENG Hai-chun, et al. Design of data acquisition system for portable thrust bearing based on LabVIEW[J]. Computer Measurement & Control, 2016, 24(5): 186-189.
[5] 李穆. 水轮发电机组状态监测与故障诊断系统研究与实现[D]. 武汉:华中科技大学水电与数字化工程学院,2011:1-10. LI Mu. Research and implementation of condition monitoring and fault diagnosis system for hydropower unit[D]. Wuhan: Huazhong University of Science and Technology, School of Hydropower and Information Engineering, 2011: 1-10.
[6] 武中德, 王黎钦, 曲大庄, 等. 大型水轮发电机推力轴承热弹流润滑性能分析[J]. 摩擦学学报,2001,21(2): 147-150. doi:10.3321/j.issn:1004-0595.2001.02.017 WU Zhong-de, WANG Li-qin, QU Da-zhuang, et al. Analysis of thermoelastic hydrodynamic lubrication performance of thrust bearings for large hydrogenerators [J]. Tribology, 2001, 21(2): 147-150.
[7] 王悦昶, 刘莹, 王占朝, 等. 基于PID方法的可倾瓦推力轴承分析[J]. 摩擦学学报,2017,37(3):372-378. doi:10.16078/j.tribology.2017.03.013 WANG Yue-chang, LIU Ying, WANG Zhan-chao, et al. Analysis of tilt pad thrust bearings based on PID method[J]. Tribology, 2017, 37(3): 372-378.
[8] 朱兵, 胡军, 陈闽杰. 三峡电站700 MW机组推力轴承状态监视系统[J]. 润滑与密封,2015(12):143-145. doi:10.3969/j.issn.0254-0150.2015.12.028 ZHU Bing, HU Jun, CHEN Min-jie. State monitoring system on thrust bearing of 700 MW unit in Three Gorges hydropower station[J]. Lubrication Engineering, 2015(12): 143-145.
[9] YOUSSEF A, MATTHEWS D, GUZZOMI A, et al. Measurement of pressure fluctuations inside a model thrust bearing using PVDF sensors[J]. Sensors, 2017, 17(4): 878. doi:10.3390/s17040878
[10] 马希直, 徐华. 圆形可倾瓦推力轴承入油边界条件的确定[J]. 摩擦学学报,2001,21(2):143-146. doi:10. 3321/j.issn:1004-0595.2001.02.016 MA Xi-zhi, XU Hua. Determination of oil-inlet boundary condition of circular tilt-pad thrust bearing[J]. Tribology, 2001, 21(2): 143-146.
[11] 毕纯辉, 粱广太, 李金香. 水轮发电机推力轴承油膜厚度的在线监测[J]. 电站系统工程,1995,11(5):24-29. BI Chun-hui, LIANG Guang-tai, LI Jin-xiang. On-line monitoring of oil film thickness of hydro-generator thrust bearing[J]. Power System Engineering, 1995, 11(5): 24-29.
[12] WANG W, LIU B, ZHANG Y, et al. Theoretical and experimental study on the static and dynamic characteristics of tilting-pad thrust bearing[J]. Tribology International, 2018, 213(6): 26-36. doi:10.1016/j.triboint. 2018.02.019
[13] 张赣波, 赵耀, 储炜, 等. 船舶可倾瓦推力轴承润滑油膜的轴向动特性计算方法[J]. 船舶力学,2017,21(5): 603-612. doi:10.3969/j.issn.1007-7294.2017.05.011 ZHANG Gan-bo, ZHAO Yao, CHU Wei, et al. Calculation method for axial dynamic characteristics of lubricant oil film in marine tilting pad thrust bearing[J]. Journal of Ship Mechanics, 2017, 21(5): 603-612.
[14] KIOGORA P R, KINYANJUI M N, THEURI D M. A conservative scheme model of an inclined pad thrust bearing[J]. International Journal of Engineering Science and Innovative Technology, 2014, 3(1): 446-453.
[15] 王宁. 基于MATLAB的滑动轴承压力分布的数值计算[D]. 大连:大连理工大学能源与动力学院,2006:22-28. doi:10.7666/d.y865460 WANG Ning. Numerical calculation to the pressure distribution of journal bearing based on the MATLAB[D]. Dalian: Dalian University of Technology, College of Energy and Power, 2006: 22-28.
[16] 刘奇. 大型水润滑推力轴承承载性能及推力瓦型面优化研究[D]. 太原:中北大学机械工程学院,2013:31-37. LIU Qi. Research on the load carrying capacity of large water lubricated thrust bearing and the optimization of thrust pad profile[D]. Taiyuan: North University of China, School of Mechanical Engineering, 2013: 31-37.
[17] 白清华. 面接触润滑油膜厚度在线测量方法及其非稳态特性研究[D]. 青岛: 青岛理工大学机械与汽车工程学院, 2018: 91-107. BAI Qing-hua. Online measurement of lubricant film thickness in slider-on-disc contacts and its behavior in non-steady state[D]. Qingdao: Qingdao University of Technology, School of Mechanical and Automotive Engineering, 2018: 91-107.
[18] SHANKAR V. A finite difference approach to pressure distribution on fixed pad thrust bearing under isothermal condition[J]. International Journal of Mechanical Engineering and Technology. 2017, 8(7): 1837-1843.doi:10.1615/ihmtc-2017.3110
[1] ZHU Ai-Bin, CHEN Yong-Jin, XIE You-Bai. Research on middleware for speciality knowledge acquirement[J]. Chinese Journal of Engineering Design, 2003, 10(3): 113-117.