Innovative Design |
|
|
|
|
Research on design and performance of adaptive muffler system |
ZHANG Xiao-guang, GAO Fei-xiang, Lü Chuan-mao, HAN Dong |
School of Mechanical Engineering, North University of China, Taiyuan 030051, China |
|
|
Abstract In order to effectively control low-frequency broadband noise, the sound lining is widely used due to its simple structure. However, the traditional sound lining can only eliminate the noise of a fixed frequency, that is, when the frequency of the environmental noise changes, the muffling performance is significantly reduced. To this end, this paper proposed an adaptive muffler system, which used the principle of piezoelectric sound lining to transmit and control data programs through LabVIEW serial communication technology, and drove the piezoelectric sound lining to adaptively control according to the variation of different noise frequencies. The signal, by adjusting the output voltage of the power supply, changed the volume of the piezoelectric sound lining resonant cavity, thereby timely and effectively adjusting muffling frequency of the piezoelectric sound lining, and broadening the noise anechoic band of the sound lining. The research showed that when the volume of the piezoelectric sound lining resonant cavity was reduced, the muffling frequency band was shifted to the low frequency direction, and vice versa. The output voltage was -![]() 100-200 V, and the system could always achieve the best muffling effect in the environment where the main noise frequency was 1364-1420 Hz, and achieved adaptive noise elimination. Therefore, applying a direct-current power supply to the sound lining could adjust the muffling frequency, so that the muffling frequency band of the sound lining shifted with the change of the noise frequency, widening the muffling frequency range of the sound lining. The designed muffler system can realize the adaptive control of noise, and provide a reference for the active control and optimization of sound liner.
|
Received: 27 May 2019
Published: 28 December 2019
|
|
自适应消声系统的设计与性能研究
为了有效控制低频宽带噪声,结构简单的声衬被广泛应用。传统声衬只能消除固定频率的噪声,即当环境噪声频率发生改变时,传统声衬消声性能明显下降。为此,提出了一种自适应消声系统,利用压电声衬工作原理,通过LabVIEW串口通信技术传输与控制数据程序,驱动压电声衬使它能根据噪声频率的变化自适应控制信号;通过调节电源输出电压,改变压电声衬共振腔体积,从而及时有效地调节压电声衬消声频率,拓宽压电声衬的消声频带。分析结果表明,压电声衬共振腔体积减小时,消声频带向低频方向偏移,反之向高频方向偏移;当输出电压为 -![]() ![]() 100~200 V时,自适应消声系统可在噪声频率为1 364~1 420 Hz的环境中一直保持最佳的消声效果,实现了自适应消噪。研究结果表明,对声衬施加直流电源可以对其消声频率进行调节,使其消声频带随着噪声频率的变化而偏移,拓宽其消声频带。设计的消声系统可以实现噪声的自适应控制,可为声衬的主动控制及优化提供参考。
关键词:
压电声衬,
消声性能,
LabVIEW,
共振频率,
串口通信
|
|
[1] 靳国永, 张洪田, 李玩幽, 等. 基于可调频亥姆霍兹共振器的封闭空间噪声自适应半主动控制[J].声学学报, 2010,35(3):309-320. doi:CNKI:SUN:XIBA.0.2010-03-006 JIN Guo-yong, ZHANG Hong-tian, LI Wan-you, et al. Adaptive semi-active noise control in enclosure using self-tuning Helmholtz resonators[J]. Acta Acustica, 2010, 35(3): 309-320. [ 2] 杨宇涛, 祝锡晶, 张青青, 等. 多级柔性壁声衬设计及其消声性能研究[J].工程设计学报,2018,25(5):518-524. doi: 10.3785/j.issn.1006-754X.2018.05.004 YANG Yu-tao, ZHU Xi-jing, ZHANG Qing-qing, et al. Design and silence performance research of multistage flexible wall acoustic liner[J]. Chinese Journal of Engineering Design, 2018, 25(5): 518-524. [ 3] ENVIA E. Emerging community noise reduction approaches[C]//AIAA Atmospheric Space Environments Conference, Honolulu, Hawaii, Jun. 27-30, 2011. doi:10.2514/6.2011-3532 [ 4] BECK B S, SCHILLER N H, JONES M G. Impedance assessment of a dual-resonance acoustic liner[J]. Applied Acoustics, 2015, 93: 15-22. doi: 10.1016/j.apacoust.2015. 01.011 [ 5] MILAN S, LU Z B, GIH-KEONG L. Transparent tunable acoustic absorber membrane using inkjet-printed PEDOT: PSS thin-film compliant electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(46):1-31. doi:10.1021/acsami.8b12368 [ 6] 吕海峰, 潘宏侠, 黄晋英. 一种调频式共振消声器的设计[J].振动.测试与诊断,2012,32(6):1021-1025. doi: 10.3969/j.issn.1004-6801.2012.06.028 Lü Hai-feng, PAN Hong-xia, HUANG Jin-ying. Design of a frequency modulation resonant muffler[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(6): 1021-1025. [ 7] QIU S, YING J Y. A combined shape and liner optimization of a general aeroengine intake for tone noise reduction[J]. Procedia Engineering, 2015, 99: 5-20. doi: 10.1016/j.proeng.2014.12.502 [ 8] 韩彦南, 吕海峰, 耿彦章, 等. 压电声衬结构设计及其优化[J].压电与声光,2017,39(2):220-223,227. HAN Yan-nan, Lü Hai-feng,GENG Yan-zhang, et al. Design and optimization of the piezoelectric acoustic liner structure[J]. Piezoelectrics & Acoustooptics, 2017, 39(2): 220-223, 227. [ 9] 牛凯强.压电致动声衬及其消声性能研究[D]. 太原:中北大学机械工程学院,2016:25. NIU Kai-qiang. Piezoelectrically actuated acoustic lining and its muffling performance [D]. Taiyuan: North University of China, School of Mechanical Engineering, 2016: 25. [ 10] 陈鹏, 吕海峰, 安君, 等. 异形腔体压电声衬声学性能[J].航空动力学报,2018,33(12):2999-3006. doi:10. 13224/j.cnki.jasp.2018.12.021 CHEN Peng, Lü Hai-feng, AN Jun, et al. Acoustic performance of piezoelectric acoustic liners with heteromorphic cavity[J]. Journal of Aerospace Power, 2018, 33(12): 2999-3006. [ 11] JI Z L. Acoustic length correction of closed cylindrical side-branched tube[J]. Journal of Sound and Vibration, 2005, 283(3): 1180-1186. doi: 10.1016/j.jsv.2004.06.044 [ 12] 季振林. 消声器声学理论与设计[M].北京:科学出版社,2015:66-70. JI Zhen-lin. Theory and design of acoustic acoustics[M]. Beijing: Science Press, 2015: 66-70. [ 13] 罗剑. 基于MEMS技术的新兴射流技术研究[D]. 西安: 西北工业大学机电学院, 2010: 20-22. LUO Jian. Research on emerging jet technology based on MEMS technology [D]. Xi'an: Northwestern Polytechnical University, School of Mechatronics, 2010: 20-22. [ 14] 陈明, 李鹏, 罗斌. 颈部材料对亥姆霍兹共振器吸声性能的影响[J].中国测试,2016,42(8):127-130. doi: 10. 11857/j.issn.1674-5124.2016.08.026 CHEN Ming, LI Peng, LUO Bin. Neck materials influence to Helmholtz resonator sound absorption performance [J]. China Measurement & Testing Technology, 2016, 42(8): 127-130. [ 15] 韩彦南. 可调频声衬及其控制技术研究[D]. 太原: 中北大学机械工程学院,2017:50-53. doi:CNKI:CDMD:2.1017.167048 HAN Yan-nan. The research of tunable piezoelectric acoustic liner and its control[D]. Taiyuan: North University of China, School Mechanical Engineering, 2017: 50-53. [ 16] 沈培富, 冯庆胜, 戴淑军. 基于LabVIEW与Modbus协议的变频器控制系统研究与实现[J].变频器世界, 2017(12):83-86. SHEN Pei-fu, FENG Qing-sheng, DAI Shu-jun. A research and implementation of inverter control system based on LabVIEW and Modbus protocol[J]. The World of Inverters, 2017(12): 83-86. [ 17] 陈树学, 刘萱. LabVIEW宝典[M].北京:电子工业出版社,2014: 75-77. CHEN Shu-xue, LIU Xuan. LabVIEW collection [M]. Beijing: Publishing House of Electronics Industry, 2014: 75-77. [ 18] 耿彦章. 声学元件多参数测量系统设计及应用[D].太原:中北大学机械工程学院,2017:43. GENG Yan-zhang. Design and application of multi-parameter measurement system for acoustic components [D]. Taiyuan: North University of China, School Mechanical Engineering, 2017:43. [ 19] 刘彦明, 朱从云, 黄其柏. 基于倒频谱方法测量吸声系数的一种新方法[J].机械设计与制造,2011(2):196-198. doi:10.3969/j.issn.1001-3997.2011.02.078 LIU Yan-ming, ZHU Cong-yun, HUANG Qi-bai. A new method to measure the absorption coefficient based on cepstrum analysis[J]. Machinery Design & Manufacture,2011(2): 196-198. doi: 10.3969/j.issn.1001-3997.2011.02.078 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|