Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (5): 664-674    DOI: 10.3785/j.issn.1006-754X.2025.05.111
优化设计     
基于改进麻雀搜索算法的机械臂多目标轨迹优化方法
李玲1,2(),侯玉龙1,2,李瑶1,2,罗丹1,解妙霞1
1.西安建筑科技大学 机电工程学院,陕西 西安 710055
2.西安市重型机械装备智能化技术重点实验室,陕西 西安 710311
Multi-objective trajectory optimization method for manipulator based on improved sparrow search algorithm
Ling LI1,2(),Yulong HOU1,2,Yao LI1,2,Dan LUO1,Miaoxia XIE1
1.School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Xi'an Key Laboratory of Intelligent Technology for Heavy Machinery Equipment, Xi'an 710311, China
 全文: PDF(4160 KB)   HTML
摘要:

针对传统机械臂在执行任务时存在工作效率低,以及易产生冲击和振动而造成机械疲劳损坏等问题,提出了一种基于改进麻雀搜索算法(sparrow search algorithm, SSA)的机械臂多目标轨迹优化方法。以六自由度AR4机械臂为研究对象,采用分段式3-5-3多项式插值法构建其运动学模型。然后,基于融合Tent-Logistic混沌映射、改良精英反向学习策略及柯西-高斯变异策略的新型改进SSA(newly improved SSA, NISSA),对机械臂各关节的运行时间和冲击进行多目标协同优化。最后,与其他优化算法进行对比实验,以验证NISSA的有效性。实验结果表明,应用NISSA优化后,机械臂的运行时间缩短了17.8%,运行中产生的冲击减小了12.9%。研究结果为机械臂的轨迹优化提供了高效的方法。

关键词: 机械臂轨迹优化麻雀搜索算法Tent-Logistic混沌映射精英反向学习策略    
Abstract:

Aiming at the problems such as low operational efficiency and mechanical fatigue damage caused by impact and vibration in traditional manipulators during task execution, a multi-objective trajectory optimization method based on an improved sparrow search algorithm (SSA) is proposed. Taking the six-degree-of-freedom AR4 manipulator as the research object, its kinematic model was constructed by using the segmented 3-5-3 polynomial interpolation method. Then, based on the newly improved SSA (NISSA) that integrated Tent-Logistic chaotic mapping, improved elite opposition-based learning strategy and Cauchy-Gaussian mutation strategy, the multi-objective collaborative optimization was carried out for the operation time and impact of each joint of the manipulator. Finally, comparative experiments were conducted with other optimization algorithms to verify the effectiveness of NISSA. The experimental results showed that after optimization with NISSA, the operation time of the manipulator was shortened by 17.8%, and the impact generated during operation was reduced by 12.9%. The research results provide an efficient method for the trajectory optimization of manipulators.

Key words: manipulator    trajectory optimization    sparrow search algorithm    Tent-Logistic chaotic mapping    elite opposition-based learning strategy
收稿日期: 2025-03-10 出版日期: 2025-10-31
CLC:  TP 241.2  
基金资助: 国家自然科学基金资助项目(52475124);陕西省重点研发计划资助项目(2024GX-YBXM-206);西安市“科学家+工程师”队伍建设项目(24KGDW0026)
作者简介: 李 玲(1981—),男,教授,博士生导师,博士,从事智能制造、机械动力学研究,E-mail: liling@xauat.edu.cn,https://orcid.org/0000-0002-4723-2613
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李玲
侯玉龙
李瑶
罗丹
解妙霞

引用本文:

李玲,侯玉龙,李瑶,罗丹,解妙霞. 基于改进麻雀搜索算法的机械臂多目标轨迹优化方法[J]. 工程设计学报, 2025, 32(5): 664-674.

Ling LI,Yulong HOU,Yao LI,Dan LUO,Miaoxia XIE. Multi-objective trajectory optimization method for manipulator based on improved sparrow search algorithm[J]. Chinese Journal of Engineering Design, 2025, 32(5): 664-674.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.111        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I5/664

图1  机械臂连杆坐标系
关节iαi-1/(°)ai-1/mmdi /mmθi/(°)
1-9064.2169.77θ1
20305.00θ2
39000θ3
4-900222.63θ4
59000θ5
60036.25θ6
表1  机械臂的D-H参数
图2  各混沌映射的频率分布直方图
图3  Logistic混沌映射与Tent-Logistic混沌映射对比
图4  精英个体的空间位置分布
图5  NISSA流程
图6  不同测试函数下各算法的收敛曲线
图7  机械臂各关节轨迹优化中各算法的收敛曲线对比
图8  机械臂控制系统的通信架构
图9  机械臂的运动轨迹
关节插值点
ABCD
1-30306090
2030-300
345-30-60-90
424244872
5-81275481
6-60306090
表2  机械臂关节角度 (°)
图10  基于不同算法的机械臂运行时间和冲击对比
图11  优化后机械臂各关节的位移、速度和加速度曲线
  
[8] WU J C, ZHANG Z W, YANG Y D, et al. Time optimal trajectory planning of robotic arm based on improved tuna swarm algorithm[J]. Computer Integrated Manufacturing Systems, 2024, 30(12): 4292-4301.
[9] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[10] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.
LÜ X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
[11] 邱冰, 李小兵, 石志新, 等. 多策略改进麻雀算法在机械臂时间最优轨迹规划中的应用[J]. 机械科学与技术, 2024, 43(10): 1714-1722.
QIU B, LI X B, SHI Z X, et al. Application of multi-strategy improved sparrow algorithm in time optimal trajectory planning of manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(10): 1714-1722.
[12] 季海涛, 靳华伟. 多策略改进型麻雀算法在水下伸缩臂轨迹定位的应用[J]. 机床与液压, 2023, 51(15): 50-56.
JI H T, JIN H W. Application of multi-strategy improved sparrow algorithm in trajectory location of underwater telescopic boom[J]. Machine Tool & Hydraulics, 2023, 51(15): 50-56.
[13] LIU J, ZHU H T, CHEN Y, et al. Path following of an underwater snake-like robot exposed to ocean currents and locomotion efficiency optimization based on multi-strategy improved sparrow search algorithm[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1236.
[14] 顾清华, 姜秉佼, 常朝朝, 等. 求解大规模优化问题的改进麻雀搜索算法[J]. 控制与决策, 2023, 38(7): 1960-1968.
GU Q H, JIANG B J, CHANG Z Z, et al. An improved sparrow search algorithm for solving large-scale optimization problems[J]. Control and Decision, 2023, 38(7): 1960-1968.
[15] 李昕燃, 靳伍银. 基于改进麻雀算法优化支持向量机的滚动轴承故障诊断研究[J]. 振动与冲击, 2023, 42(6): 106-114.
[1] 陆一, 王萍, 李书福, 等. 传统制造必须向智能制造转变[J]. 中国质量监管, 2016(10): 70-71.
LU Y, WANG P, LI S F, et al. Traditional manufacturing must be transformed into intelligent manufacturing[J]. China Quality Supervision, 2016(10): 70-71.
[15] LI X R, JIN W Y. Fault diagnosis of rolling bearings based on ISSA-SVM[J]. Journal of Vibration and Shock, 2023, 42(6): 106-114.
[16] 何康佳, 何玲, 冯磊, 等. 六轴机器人的运动学建模与轨迹规划研究[J]. 机床与液压, 2020, 48(12): 171-176, 183.
HE K J, HE L, FENG L, et al. Research on kinematic modeling and trajectory planning of six-axis robot[J]. Machine Tool & Hydraulics, 2020, 48(12): 171-176, 183.
[17] 郭锐, 石月, 李永涛, 等. 液压凿岩机器人机械臂轨迹规划研究[J]. 中国工程机械学报, 2021, 19(4): 289-294.
GUO R, SHI Y, LI Y T, et al. Research on trajectory planning of hydraulic rock drilling robot manipulator[J]. Chinese Journal of Construction Machinery, 2021, 19(4): 289-294.
[18] GUPTA S, DEEP K. A hybrid self-adaptive sine cosine algorithm with opposition based learning[J]. Expert Systems with Applications, 2019, 119: 210-230.
[19] 郭文艳, 王远, 戴芳, 等. 基于精英混沌搜索策略的交替正余弦算法[J]. 控制与决策, 2019, 34(8): 1654-1662.
GUO W Y, WANG Y, DAI F, et al. Alternating sine cosine algorithm based on elite chaotic search strategy[J]. Control and Decision, 2019, 34(8): 1654-1662.
[20] GHAREHCHOPOGH F S, NAMAZI M, EBRAHIMI L, et al. Advances in sparrow search algorithm: a comprehensive survey[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 427-455.
[21] WANG W C, XU L, CHAU K W, et al. Yin-yang firefly algorithm based on dimensionally Cauchy mutation[J]. Expert Systems with Applications, 2020, 150: 113216.
[22] DUAN J H, GONG Y P, LUO J, et al. Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer[J]. Scientific Reports, 2023, 13(1): 12127.
[2] 白克强. 双臂机器人拟人化动作实现与协调控制方法研究[D]. 合肥: 中国科学技术大学, 2017.
BAI K Q. Research on human-like arm motion generation and cooperation control method for humanoid dual-arm robots[D]. Hefei: University of Science and Technology of China, 2017.
[3] 董理, 杨东, 鹿建森. 工业机器人轨迹规划方法综述[J]. 控制工程, 2022, 29(12): 2365-2374.
DONG L, YANG D, LU J S. Trajectory planning methods for industrial robots: a review[J]. Control Engineering of China, 2022, 29(12): 2365-2374.
[4] 朱战霞, 靖飒, 仲剑飞, 等. 基于碰撞检测的空间冗余机械臂避障路径规划[J]. 西北工业大学学报, 2020, 38(1): 183-190. doi:10.1051/jnwpu/20203810183
ZHU Z X, JING S, ZHONG J F, et al. Obstacle avoidance path planning of space redundant manipulator based on a collision detection algorithm[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 183-190.
doi: 10.1051/jnwpu/20203810183
[5] 蔡永超. 机械臂关节空间轨迹的时间最优智能规划研究[J]. 机械设计与制造, 2020(3): 272-276.
CAI Y C. Mechanical arm trajectory optimal time intelligent planning in the joint space[J]. Machinery Design & Manufacture, 2020(3): 272-276.
[6] 孙颙琰, 郭文勇, 孙云岭, 等. 基于自适应变换蝙蝠算法的机械臂轨迹优化[J]. 机械传动, 2022, 46(5): 35-41.
SUN Y Y, GUO W Y, SUN Y L, et al. Trajectory optimization of manipulator based on adaptive transformation bat algorithm[J]. Journal of Mechanical Transmission, 2022, 46(5): 35-41.
[7] 谢嘉, 吴家桢, 李永国, 等. 改进粒子群优化算法在机械臂轨迹规划中的应用[J]. 机械科学与技术, 2024, 43(10): 1681-1686.
XIE J, WU J Z, LI Y G, et al. Applying improved particle swarm optimization algorithm to trajectory planning of manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(10): 1681-1686.
[1] 舒申,王家梁,胡俊峰,张宇,楚凯,周浩,蔡铭炜. 基于双目视觉的软体机械臂几何参数测量方法[J]. 工程设计学报, 2025, 32(5): 613-622.
[2] 周亮,温涛,胡俊峰,周浩. 基于滚动接触的单模块多自由度柔性连续体机械臂设计[J]. 工程设计学报, 2024, 31(4): 473-482.
[3] 张伟涛,赵栋杰,王禄,包新棉,黄保赛. 一种柔性采摘机械臂的运动学分析与仿真[J]. 工程设计学报, 2024, 31(2): 230-237.
[4] 陈洪月,蔡明航,杨辛未,戴忠桓. 更换电铲钢丝绳专用机械臂架的结构及动力学分析[J]. 工程设计学报, 2023, 30(5): 590-600.
[5] 金洪杨,岳龙旺,刘景达,郑卫卫,赵朝,徐嘉辉. 基于散粒体阻塞机理的变刚度柔性机械臂研究[J]. 工程设计学报, 2023, 30(4): 449-455.
[6] 李琦琦,徐向荣,张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520.
[7] 纪超,王亮,王孝敬,李小兵,曹雯. 基于MSSA-SVM的电缆隧道故障预警系统设计[J]. 工程设计学报, 2023, 30(1): 109-116.
[8] 潘盛湖,张小军,吕东. 一种基于机器视觉的平面加工机床控制系统的设计[J]. 工程设计学报, 2022, 29(6): 784-792.
[9] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[10] 袁凯, 刘延俊, 孙景余, 罗星. 基于模糊RBF神经网络的水下机械臂控制研究[J]. 工程设计学报, 2019, 26(6): 675-682.
[11] 贺晓莹, 高兴宇, 王海舰, 彭艳华, 李煜. 七自由度双臂协作机器人操作稳定性分析[J]. 工程设计学报, 2019, 26(6): 706-713.
[12] 何改云, 庞凯瑞, 桑一村, 刘晨辉, 王宏亮. 曲面匹配方法在刀具加工轨迹优化中的应用[J]. 工程设计学报, 2019, 26(2): 190-196.
[13] 范曙远, 王海波, 吴小笛, 张乐, 张龙. 工业装配外骨骼机械臂承重性能研究[J]. 工程设计学报, 2018, 25(6): 697-702.
[14] 王晨学, 平雪良, 徐超. 基于视觉辅助定位的机械臂运动学参数辨识研究[J]. 工程设计学报, 2018, 25(1): 27-34.
[15] 黄超, 刘衍聪, 伊鹏. 孵化蛋车装卸机械臂的设计与试验[J]. 工程设计学报, 2017, 24(5): 601-608.