Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (4): 433-439    DOI: 10.3785/j.issn.1006-754X.2017.04.010
建模、分析、优化和决策     
基于粒子群算法多目标优化液压支架四连杆
赵东波1, 姚灵灵2, 袁坤坤1, 陆金桂1
1. 南京工业大学 机械与动力工程学院, 江苏 南京 211816;
2. 东华大学 机械工程学院, 上海 200051
Multi-objective optimization for four-bar mechanism of hydraulic support based on particle swarm optimization algorithm
ZHAO Dong-bo1, YAO Ling-ling2, YUAN Kun-kun1, LU Jin-gui1
1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China;
2. School of Mechanical Engineering, Donghua University, Shanghai 200051, China
 全文: PDF(1175 KB)   HTML
摘要:

针对煤矿液压支架四连杆受力计算较为复杂,简化计算时易出现较大误差且稳定性较差的问题,提出从四连杆机构的空间受力出发并结合支架的运动轨迹,采用粒子群优化算法对四连杆机构展开优化研究。首先建立了四连杆优化模型,在优化模型中选取对结果影响较大的参数作为优化变量,以轨迹偏差、连杆长、连杆力之和作为目标函数,根据液压支架设计规范确定约束条件。然后使用粒子群算法对目标函数进行迭代求解并在求解过程中采用惩罚函数法解决优化模型中不等式约束问题。对比优化前后连杆的杆长、受力和稳定性数据,发现优化后的四连杆实现了轻量化,且受力较小,稳定性提高。研究结果对四连杆的设计有实际参考价值。

关键词: 液压支架四连杆粒子群算法优化    
Abstract:

Taking into account the problems of large error and poor stability because of the com-plicated force calculation of four-bar mechanism of coal hydraulic support,a method of particle swarm optimization is proposed to optimize the four-bar mechanism combined with the space force of the four-bar mechanism and movement trajectories.Firstly,the four-bar mechanism opti-mization model was established.Then,the parameters having greater impact on results were se-lected as the optimization variables in the optimization model, and the sum of trajectory deviation,connecting rod length and connecting rod force was taken as the objective function,and the constraints could be determined according to design specification of the hydraulic support. Lastly,the particle swarm optimization algorithm was used to solve the objective function and the penalty function method was used to solve the problems of inequality constraints in the optimization model.The purposes of lightweight,less force,high stability after the optimization of the four-bar mechanism were achieved by the comparison of rod length,stress and stability data be-fore and after optimization.The results indicate that the method has practical reference value for the design of the four-bar mechanism.

Key words: four-bar mechanism of hydraulic support    particle swarm optimization algorithm    op-timization
收稿日期: 2017-04-05 出版日期: 2017-08-28
CLC:  TD355  
基金资助:

十二五国家科技支撑计划项目(2013BAF02B11)

通讯作者: 陆金桂(1966-),男,江苏南京人,教授,博士,从事优化设计和智能算法等研究,E-mail:lujg_njtech@163.com     E-mail: lujg_njtech@163.com
作者简介: 赵东波(1986-),男,江苏淮安人,硕士,从事疲劳寿命与智能算法研究,E-mail:zhaodongbo2853@163.com,http://orcid.org/0000-0003-4159-30018
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵东波
姚灵灵
袁坤坤
陆金桂

引用本文:

赵东波, 姚灵灵, 袁坤坤, 陆金桂. 基于粒子群算法多目标优化液压支架四连杆[J]. 工程设计学报, 2017, 24(4): 433-439.

ZHAO Dong-bo, YAO Ling-ling, YUAN Kun-kun, LU Jin-gui. Multi-objective optimization for four-bar mechanism of hydraulic support based on particle swarm optimization algorithm[J]. Chinese Journal of Engineering Design, 2017, 24(4): 433-439.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.04.010        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I4/433

[1] 杨磊,王新亚,许日成,等.反四连杆机构液压支架顶梁运动轨迹分析[J].矿山机械,2013,41(8):28-30. YANG Lei,WANG Xin-ya,XU Ri-cheng,et al.Analy-sis on motion trajectory of top beam in hydraulic support with reverse four-bar linkage[J].Mining & Processing Equipment,2013,41(8):28-30.
[2] 苗耀华.放顶煤液压支架四连杆机构优化设计[J].煤炭工程,2007(6):41-43. MIAO Yao-hua.Optimization design of four link mecha-nism of hydraulic support for top coal caving[J].Coal Engineering,2007(6):41-43.
[3] 牛艳奇.液压支架四连杆多目标优化[J].辽宁工程技术大学学报(自然科学版),2015,34(5):628-632. NIU Yan-qi.Hydraulic support four-bar connecting rod multi-objective optimization[J]. Journal of Liaoning Technical University (Natural Science),2015,34(5):628-632.
[4] 韩凤霞,胡登高,范迅.液压支架四连杆机构的三维建模与运动仿真[J].煤矿机械,2006,27(9):67-68. HAN Feng-xia, HU Deng-gao, FAN Xun.Three-di-mension model and dynamic animation of four-bar mech-anism of hydraulic support[J].Coal Mine Machinery, 2006,27(9):67-68.
[5] 汤卓,刘雯雯,王志.基于弦截法液压支架四连杆机构运动分析[J].煤矿机械,2015,36(4):172-174. TANG Zhuo,LIU Wen-wen,WANG Zhi.Movement a-nalysis of hydraulic support four bar linkage based on string section method[J].Coal Mine Machinery,2015, 36(4):172-174.
[6] 王建国.基于MATLAB的液压支架四连杆优化设计[J]. 煤矿开采,2010,15(2):70-72. WANG Jian-guo.Optimized design for four-bar linkage structure of powered support based on MATLAB[J]. Coal Mining Technology,2010,15(2):70-72.
[7] 张俊文,董长吉.OpenGL在煤矿液压支架四连杆机构运动仿真中的应用[J].矿业研究与开发,2006,26(1):54-56. ZHANG Jun-wen, DONG Chang-ji. Application of OpenGL in the motion simulation of four-bar mechanism of powered mining support[J].Mining Research and De-velopment,2006,26(1):54-56.
[8] 李秋生,王勇,教光印.基于VC ++液压支架四连杆机构的优化设计与分析[J].煤矿机械,2010,31(11):23-24. LI Qiu-sheng,WANG Yong,JIAO Guang-yin,et al. Optimization design and analysis of four-linkage mecha-nism in hydraulic support based VC ++[J].Coal Mine Machinery,2010,31(11):23-24.
[9] 陈亮亮.掩护式液压支架四连杆机构的优化设计[J].中小企业管理与科技:上旬刊,2012(4):263-264. CHEN Liang-liang.Optimum design for four-bar of coal hydraulic-support[J].Management & Technology of SME:Early,2012(4):263-264.
[10] 曾庆良,戴汉政,张鑫. 基于ADAMS的大倾角液压支架四连杆优化设计[J].煤炭科学技术,2009,37(1):36-38. ZENG Qing-liang,DAI Han-zheng,ZHANG Xin.Op-timized design on four linking bar of hydraulic powered support for high inclined seam based on ADAMS[J]. Coal Science and Technology,2009,37(1):36-38.
[11] 叶铁丽,李民,刘欣丽.液压支架四连杆机构优化设计及运动仿真[J].煤矿机械,2009,30(5):37-39. YE Tie-li,LI Min,LIU Xin-li.Optimal design of four-bar mechanism in hydraulic support[J].Coal Mine Ma-chinery,2009,30(5):37-39.
[12] 赵彬.煤矿液压支架四连杆的遗产算法优化与软件设计[D].武汉:华中科技大学机械科学与工程学院, 2011:1-56. ZHAO Bin.Genetic optimization and software design for four-bar of coal hydraulic-support[D].Wuhan:Huazhong University of Science and Technology, School of Mechanical Science & Engineering, 2011:1-56.
[13] 张海军,李炳文,姚新华,等.基于Scilab的液压支架四连杆优化设计[J].煤矿机械,2009,30(4):2-4. ZHANG Hai-jun,LI Bing-wen,YAO Xin-hua,et al. Optimal design of four-bar mechanism in hydraulic support based on Scilab[J].Coal Mine Machinery, 2009,30(4):2-4.
[14] 李谨,王斌,姚新改,等.基于Web的液压支架四连杆优化设计[J].矿山机械,2014,42(2):9-12. LI Jin,WANG Bin,YAO Xin-gai,et al.Optimization design of four-bar linkage in hydraulic support based on Web[J].Mining Machine,2014,42(2):9-12.
[15] 罗润林,阮怀宁,朱昌星.基于粒子群-最小二乘法的岩石流变模型参数反演[J].辽宁工程技术大学学报(自然科学版),2009,28(5):750-753. LUO Run-lin, RUAN Huai-ning,ZHU Chang-xing. Parameter inversion of rock creep model based on PSO -least square method[J].Journal of Liaoning Technical University (Natural Science),2009,28(5):750-753.
[16] 权国通,谭超,侯海潮,等.基于粒子群三次样条优化的采煤机截割路径规划[J].煤炭科学技术,2011,39(3):77-79. QUAN Guo-tong,TAN Chao,HOU Hai-chao,et al. Cutting path planning of coal shearer base on particle swarm triple spline optimization[J].Coal Science and Technology,2011,39(3):77-79.
[17] 黄太安,生佳根,徐红洋,等.一种改进的简化粒子群算法[J].计算机仿真,2013,30(2):327-335. HUANG Tai-an, SHENG Jia-gen, XU Hong-yang, et al.Improved simplified particle swarm optimization[J].Computer Simulation,2013,30(2):327-335.
[1] 张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
[2] 王柏村,朱凯凌,鲍劲松,王峰,谢海波,杨华勇. 基于数字底座的涂装车身缓存区智能设计与调度优化[J]. 工程设计学报, 2023, 30(4): 399-408.
[3] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[4] 郭志敏,戴海曙,翟江,洪昊岑,王柏村,谢海波,杨华勇. 基于FMI的轴向柱塞泵分布式联合仿真与动态优化[J]. 工程设计学报, 2023, 30(4): 495-502.
[5] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[6] 何育民,韩莹,周晶. 基于改进果蝇优化算法的塔机自适应滑模控制研究[J]. 工程设计学报, 2023, 30(3): 271-280.
[7] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[8] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[9] 戚其松,李成刚,董青,陈钰浩,徐航. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389.
[10] 王世杰,王龙,马硕,杨杰,马聪,段国林. 直写成形制备FGMs零件时延迟信息的数字化预测方法[J]. 工程设计学报, 2023, 30(2): 127-135.
[11] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[12] 樊俊良,肖黎,罗月婷,陈刚,瞿小林,唐毅,龚恒翔. 雾化辅助CVD腔体的优化设计与实现[J]. 工程设计学报, 2023, 30(2): 182-188.
[13] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[14] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[15] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.