Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (8): 1565-1573    DOI: 10.3785/j.issn.1008-973X.2025.08.002
    
Nonlinear model predictive trajectory tracking for valve-controlled cylinder with counterbalance valve
Qi WEI(),Jianfeng TAO*(),Hao SUN,Yulei ZHANG,Chengliang LIU
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML     PDF(2512KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A nonlinear model predictive control (NMPC) method for trajectory tracking was proposed to address instability issues in valve-controlled cylinders with counterbalance valves. An affine nonlinear state-space model was derived through transformation and simplification based on the differential-algebraic equation model. Partial feedback linearization was used to derive the zero dynamics, revealing that the difficulty in analytically obtaining stability conditions for zero dynamics was the fundamental reason to global stabilization in systems with counterbalance valves. A local control Lyapunov function (CLF) was constructed to resolve this difficulty in order to prove the local stabilizability of the system. A NMPC controller was developed. A stabilization term for the counterbalance valve spool was incorporated in the cost function. Terminal cost and constraints were designed by using CLF level set in order to ensure the local asymptotic stability of the controller. The proposed method reduced oscillation amplitude by an average of 88.19% under a 240 kg terminal load while maintaining the same level of trajectory tracking error compared with traditional feedforward-feedback control in experiments. The proposed method achieves high tracking accuracy while ensuring stability.



Key wordscounterbalance valve      valve-controlled hydraulic cylinder      nonlinear model predictive control      trajectory tracking      oscillation suppression     
Received: 03 July 2024      Published: 28 July 2025
CLC:  TP 23  
Fund:  国家自然科学基金资助项目(52075320).
Corresponding Authors: Jianfeng TAO     E-mail: v7sjtu@sjtu.edu.cn;jftao@sjtu.edu.cn
Cite this article:

Qi WEI,Jianfeng TAO,Hao SUN,Yulei ZHANG,Chengliang LIU. Nonlinear model predictive trajectory tracking for valve-controlled cylinder with counterbalance valve. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1565-1573.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.08.002     OR     https://www.zjujournals.com/eng/Y2025/V59/I8/1565


含平衡阀阀控缸的非线性模型预测轨迹跟踪

为了解决含平衡阀阀控缸系统轨迹跟踪控制易失稳振荡的问题,提出非线性模型预测控制(NMPC)的轨迹跟踪方法. 基于含平衡阀阀控缸系统的微分-代数方程模型,通过方程变换与合理简化,构建仿射非线性状态空间模型. 通过部分反馈线性化分析该模型,分离出系统的零动态,揭示了含平衡阀系统难以全局镇定的根源,即零动态稳定性条件不易解析获取. 为了解决该难题,构造局部控制Lyapunov函数(CLF),证明系统具有局部可镇定性. 提出NMPC控制器,在优化代价函数中增加平衡阀阀芯镇定项,利用CLF水平集设计终端代价与终端不等约束,保证NMPC的局部渐近稳定性. 与传统的模型前馈-反馈控制进行实验对比,在同等的轨迹跟踪误差水平下,提出方法在240 kg末端负载下的振动振幅平均下降88.19%,证明利用提出方法,可以在保证稳定性的基础上具有较高的轨迹跟踪精度.


关键词: 平衡阀,  阀控液压缸,  非线性模型预测控制,  轨迹跟踪,  振动抑制 
Fig.1 Schematic diagram of valve-controlled hydraulic cylinder with counterbalance valve
Fig.2 Diagram of proposed NMPC tracking controller
Fig.3 Diagram of controller implementation and signal details
控制器参数设置值代价函数系数设置值
预测/控制时域N12步轨迹误差项系数$ Q $2.0
控制周期$ {T_{\text{s}}} $/s0.01输入项系数$ R $0.1
速度观测器周期/ms0.1阀芯镇定项系数$ S $10.0
迭代次数限制60终端CLF系数$ {Q_{\text{f}}} $1.0
Tab.1 Parameter and configuration of NMPC
Fig.4 Variable load motion control test bench used for validation
Fig.5 Different load conditions of test bench
实验台配置参数/型号实验台配置参数/型号
液压缸型号ATOS CKN平衡阀SUN MWEG
液压缸行程/mm500平衡阀先导比4.5
比例伺服阀Parker D1FP平衡阀设定压力/MPa14
压力传感器Trafag 8252角度编码器禹衡JKW-6E
Tab.2 Parameters and component information of test bench
Fig.6 Diagram of FF-PI controller used for comparison
控制器$ {K_{\text{p}}} $$ {K_{\text{I}}} $
所提出方法8.01.5
同增益FF-PI8.01.5
小增益FF-PI4.01.5
Tab.3 Configuration of controller used for comparison
Fig.7 Pre-planned reference trajectory used in experiment
Fig.8 Position trajectory tracking under different operating conditions
Fig.9 Hydraulic drive force under different controllers without terminal load
Fig.10 Power spectral density of hydraulic drive force under different controllers without terminal load
Fig.11 Hydraulic drive force under different controllers with 240 kg terminal load
Fig.12 Power spectral density of hydraulic drive force under different controllers with 240 kg terminal load
控制器负载工况/kg$ {G}_{i} $/dB${\eta _i}$/%
同增益FF-PI1.905635.52
小增益FF-PI0.061.36
同增益FF-PI2409.2888.19
小增益FF-PI2405.7173.18
Tab.4 Comparison of average hydraulic force amplitude between proposed method and FF-PI controller
Fig.13 Box plot of trajectory-tracking error for different controllers
Fig.14 Mean-squared trajectory-tracking error for different controllers
[1]   张海平. 液压平衡阀应用技术 [M]. 北京: 机械工业出版社, 2017: 50−113.
[2]   YAO Y, ZHOU H, CHEN Y, et al. Stability analysis of a pilot operated counterbalance valve for a big flow rate [C]// ASME/BATH 2014 Symposium on Fluid Power and Motion Control. Bath: ASME, 2014: V001T01A005.
[3]   SREEHARSHA R, BHOLA M, KUMAR N, et al. Energy saving analysis using pilot operated counter balance valve [M]//Advances in engineering design. Singapore: Springer, 2019: 279–287.
[4]   JENSEN K J, EBBESEN M K, HANSEN M R Adaptive feedforward control of a pressure compensated differential cylinder[J]. Applied Sciences, 2020, 10 (21): 7847
doi: 10.3390/app10217847
[5]   KOZLOV L, POLISHCHUK L, PIONTKEVYCH O, et al Experimental research characteristics of counterbalance valve for hydraulic drive control system of mobile machine[J]. Przegląd Elektrotechniczny, 2019, 1 (4): 106- 111
doi: 10.15199/48.2019.04.18
[6]   SCIANCALEPORE A, VACCA A, PENA O, et al. Lumped parameter modeling of counterbalance valves considering the effect of flow forces [C]// ASME/BATH 2019 Symposium on Fluid Power and Motion Control. Longboat Key: ASME, 2019: V001T01A022.
[7]   RITURAJ R, SCHEIDL R Towards digital twin development of counterbalance valves: modelling and experimental investigation[J]. Mechanical Systems and Signal Processing, 2023, 188: 110049
doi: 10.1016/j.ymssp.2022.110049
[8]   SUN H, TAO J, QIN C, et al Optimal energy consumption and response capability assessment for hydraulic servo systems containing counterbalance valves[J]. Journal of Mechanical Design, 2023, 145 (5): 053501
doi: 10.1115/1.4056497
[9]   NORDHAMMER P, BAK M, HANSEN M. Controlling the slewing motion of hydraulically actuated cranes using sequential activation of counterbalance valves [C]// 12th International Conference on Control, Automation and Systems. Jeju: IEEE, 2012: 773-778.
[10]   NORDHAMMER P, BAK M, HANSEN M. A method for reliable motion control of pressure compensated hydraulic actuation with counterbalance valves [C]// 12th International Conference on Control, Automation and Systems. Jeju: IEEE, 2012: 759-763.
[11]   RITELLI G F, VACCA A Energetic and dynamic impact of counterbalance valves in fluid power machines[J]. Energy Conversion and Management, 2013, 76: 701- 711
doi: 10.1016/j.enconman.2013.08.021
[12]   SØRENSEN J K, HANSEN M R, EBBESEN M K Novel concept for stabilising a hydraulic circuit containing counterbalance valve and pressure compensated flow supply[J]. International Journal of Fluid Power, 2016, 17 (3): 153- 162
doi: 10.1080/14399776.2016.1172446
[13]   SUN H, TAO J, QIN C, et al Dynamics modeling and bifurcation analysis for valve-controlled hydraulic cylinder system containing counterbalance valves[J]. Journal of Vibration Engineering and Technologies, 2021, 9 (8): 1941- 1957
doi: 10.1007/s42417-021-00342-6
[14]   ŁOPATKA M J, KROGUL P, RUBIEC A, et al Preliminary experimental research on the influence of counterbalance valves on the operation of a heavy hydraulic manipulator during long-range straight-line movement[J]. Energies, 2022, 15 (15): 5596
doi: 10.3390/en15155596
[15]   CRISTOFORI D, VACCA A, ARIYUR K A novel pressure-feedback based adaptive control method to damp instabilities in hydraulic machines[J]. SAE International Journal of Commercial Vehicles, 2012, 5 (2): 586- 596
doi: 10.4271/2012-01-2035
[16]   KJELLAND M B, HANSEN M R Using input shaping and pressure feedback to suppress oscillations in slewing motion of lightweight flexible hydraulic crane[J]. International Journal of Fluid Power, 2015, 16 (3): 141- 148
doi: 10.1080/14399776.2015.1089071
[17]   JOSE J T, DAS J, MISHRA S Kr Dynamic improvement of hydraulic excavator using pressure feedback and gain scheduled model predictive control[J]. IEEE Sensors Journal, 2021, 21 (17): 18526- 18534
doi: 10.1109/JSEN.2021.3083677
[18]   JIA R, ZHANG J, DING R, et al Active damping control of the large-scale flexible hydraulic manipulators with independent metering system[J]. International Journal of Fluid Power, 2024, 25 (2): 163- 182
[19]   ISIDORI A The zero dynamics of a nonlinear system: from the origin to the latest progresses of a long successful story[J]. European Journal of Control, 2013, 19 (5): 369- 378
doi: 10.1016/j.ejcon.2013.05.014
[20]   ISIDORI A. Elementary theory of nonlinear feedback for single-input single-output systems [M]// Nonlinear control systems. London: Springer, 1995: 137–217.
[21]   MAYNE D Q, RAWLINGS J B, RAO C V, et al Constrained model predictive control: stability and optimality[J]. Automatica, 2000, 36 (6): 789- 814
doi: 10.1016/S0005-1098(99)00214-9
[1] Shencun YE,Bing ZHOU,Tian CHAI,Nianfei GAN,Shuai HE. Vehicle collision severity minimization strategy in unavoidable collision scenario[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 362-374.
[2] Yicheng LIU,Jialing YANG,Rui TANG,Jing CHENG. Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 351-361.
[3] Wei SUN,Heng LIU,Jian-feng TAO,Hao SUN,Cheng-liang LIU. IndRNN-1DLCNN based fault diagnosis of independent metering valve-controlled hydraulic cylinder system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2028-2041.
[4] Meng-qing HONG,Meng DING,Xiu-tao GU,Yu GUO. Fixed time trajectory tracking control for dual-arm space robot[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1168-1174.
[5] Rui YU,Xue-feng XU,Hua ZHOU,Hua-yong YANG. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 436-443.
[6] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[7] Hai-dong WU,Zhen-li SI. Intelligent vehicle trajectory tracking control based on linear matrix inequality[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 110-117.
[8] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 862-871.
[9] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[10] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 125-132.
[11] TAN Pan-long, SUN Qing-lin, CHEN Zeng-qiang. Application of active disturbance rejection control in trajectory tracking of powered parafoil system[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 992-999.
[12] TAO Guo-liang, ZHOU Chao-chao, SHANG Ce. Pneumatic position servo embedded controller and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 792-799.
[13] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 259-264.
[14] LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(6): 1124-1128.
[15] CHEN Shao-Bin, JIANG Jing-Ping. Optimal state feedback control for trajectory tracking of four-wheel mobile robot[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(12): 2186-2190.