Please wait a minute...
J4  2009, Vol. 43 Issue (6): 1124-1128    DOI: 10.3785/j.issn.1008973X.2009.06.027
    
Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform
LI Qiang, WANG Xuan-yin, CHENG Jia
(State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(992KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As Stewart platform is a multiinput multioutput(MIMO)nonlinear system, the trajectorytracking precision of the platform is usually influenced by unknown parameters of the system and coupling disturb force among the linear hydraulic actuators. An adaptive sliding mode controller with the unknown parameters of the system was proposed to improve the tracking accuracy of both position and force by backstepping design methodology during the movement. Simulation was performed with a hydraulic 6dof parallel platform by use of AMESim and MATLAB tool. The results demonstrate the effectiveness of the proposed approach in performance improvement of the system compared to the PID controller.



Published: 01 June 2009
CLC:  TP242  
Cite this article:

LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform. J4, 2009, 43(6): 1124-1128.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2009.06.027     OR     http://www.zjujournals.com/eng/Y2009/V43/I6/1124


Stewart液压平台轨迹跟踪自适应滑模控制

Stewart液压平台是一个多输入多输出(MIMO)非线性系统,其耦合运动过程中存在参数不确定性与干扰影响其轨迹跟踪精度,针对此问题,考虑了系统参数的不确定性,利用Backstepping方法结合滑模控制与自适应控制的优点,推导得到系统的多级自适应滑模控制器,以增强系统运行过程中对运动与力的跟踪性能.利用AMESim与MATLAB的联合仿真方法进行验证,与传统基于各缸位置偏差的比例积分微分(PID)控制器相比,结果表明,该方法在系统参数不确定所引起的干扰下,能更有效地降低各缸的位置和力的跟踪误差,从而提高了运动平台末端的动态跟踪精度.

[1] 刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989:119-127.
[2] 王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005:89-110.
[3] 翟传润,赵克定,张治国,等.基于神经网络的电液飞行模拟器抗负载干扰控制策略[J].哈尔滨工业大学学报,2000, 32(1):98-101.
ZHAI Chuan-run,ZHAO Ke-ding,ZHANG Zhi-guo,et al. Resisting load disturbance control of electrohydraulic servo flight simulator based neural networks[J].Journal of Harbin Institute of Technology,2000, 32(1):98-101.
[4] YUN J S,CHO H S. Application of an adaptive model following control technique to a hydraulic servo system subjected to unknown disturbances[J]. Journal of Dynamic Systems,Measurement and Contro1,1991,113(3):479-486.
[5] PARKER N R,SALCUDEAN S E,LAWRENCE P D. Application of force feedback to heavy duty hydraulic machines[C]∥IEEE International Conference on Robotics and Automation. Piscataway,NJ,USA:IEEE,1993,1:375-381.
[6] VOSSOUGHI G,DONATH M. Dynamic feedback linearization for electrohydraulically actuated control systems[J]. Journal. of Dynamic Systems,Measurement and Contro1,1995,113(10):468-477.
[7] PERNECHELE C,BORTOLETTO F,GIRO E. Neural network algorithm controlling a hexapod platform[C]∥Proceedings of IEEE-INNS-ENNS International Joint Conference on Neural Networks. \[S.l.\]: IEEE-INNS-ENNS, 2000:349-352.
[8] NEFTI S,DJOUANI K,AMIRAT Y. Neuro-fuzzy based approach for hybrid force/position robot control[C]∥Proceedings of IEEE International Conference on Industrial Technology.Bangkok,Thailand:IEEE,2002:376381.
[9] 管成,朱善安.电液伺服系统的多滑模鲁棒自适应控制[J].控制理论与应用,2005,22(6):931-938.
GUAN Cheng,ZHU Shan-an. Multiple sliding mode robust adaptive control of an electro-hydraulic servo system[J].Control Theory & Applications,2005,22(6):931-938.
[10] PAN Z, BASAR T.Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems[J].IEEE Transaction on Automatic Control,1998,4:1066-1083.
[11] SHIEH H J ,SHYU K K. Nolinear sliding-mode torque control with adaptive backstepping approach for induction motor drive[J].IEEE Transaction on Industrial Electronics,1999,46:380-389.
[12] 何景峰,叶正茂,姜洪州,等.基于关节空间模型的并联机器人耦合性分析[J].机械工程学报,2006,42(6):161-165.
HE Jing-feng,YE Zheng-mao,JIANG Hong-zhou,et al. Coupling analysis based on joint-space model of parallel robot[J]. Chinese Journal of Mechanical Engineering,2006,42(6):161-165.

No related articles found!