Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (2): 375-383    DOI: 10.3785/j.issn.1008-973X.2025.02.015
    
Multi-task allocation framework in context of caregiver-robot collaborative elderly care
Yong LI1(),Yue WANG1,Fuqiang LIU2,Baiqing SUN1,Kairu LI1
1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2. The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
Download: HTML     PDF(876KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-human-robot collaboration task allocation framework considering both caregiver’s fatigue and elderly satisfaction was proposed in order to balance the subjective feelings of caregivers and elderly people. A mathematical model of caregiver’s fatigue was established by considering factors such as caregiver’s rest duration before task execution, the rapport between caregivers and elderly people, and task difficulty. A multi-objective optimization model for multi-human-robot collaboration task allocation was developed combined with elderly satisfaction. A two-dimensional double-constraint encoding method and its reasonable initialization and updating methods were proposed based on the characteristics of common tasks in elderly care scenarios. A multi-objective evolutionary algorithm was employed to solve the multi-objective optimization model by using this encoding. The final task execution plan was determined from the Pareto optimal solution set according to the min-max and max-min principles in order to prevent situations where individual caregivers experience extreme fatigue or individual elderly people have extremely low satisfaction. The simulation results demonstrate that the multi-task allocation framework for ‘multiple caregivers and multiple robots’ collaboration can achieve task allocation within a multi-caregiver and multi-robot team in the proposed elderly care scenario while balancing caregiver’s fatigue and elderly satisfaction, as well as maintaining a balance between the overall and individual caregivers, and between the overall and individual elderly people.



Key wordselderly care scenario      multi-task allocation      caregiver’s fatigue      multi-objective optimization     
Received: 28 December 2023      Published: 11 February 2025
CLC:  TP 18  
Fund:  辽宁省兴辽英才计划资助项目(XLYC2203104).
Cite this article:

Yong LI,Yue WANG,Fuqiang LIU,Baiqing SUN,Kairu LI. Multi-task allocation framework in context of caregiver-robot collaborative elderly care. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 375-383.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.02.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I2/375


护工-机器人协作养老情境下的多任务分配框架

为了兼顾护工和老人的主观感受,提出考虑护工疲劳度和老人满意度的多人机协作任务分配框架. 考虑护工执行任务前的休息时长、护工和老人之间的好感度、任务难度等因素,建立护工疲劳度的数学模型,结合老人满意度建立多人机协作任务分配多目标优化模型. 结合养老情境下常见任务的特点,提出二维双约束编码及其合理初始化和更新方法. 基于该编码,采用多目标进化算法对多目标优化模型进行求解. 根据min-max与max-min原则,在Pareto最优解集中确定最终的任务执行方案,以防止出现个体护工疲劳度极大或个体老人满意度极小的情况. 仿真结果表明,在提出的养老情境下,“多护工-多机器人”协作的多任务分配框架能够在完成多护工-多机器人团队任务分配的同时,兼顾护工疲劳度和老人满意度、护工总体和个体之间、老人总体和个体之间的平衡.


关键词: 养老情境,  多任务分配,  护工疲劳度,  多目标优化 
Fig.1 TAV schematic
Fig.2 Iterative crossover approach to task execution scheme coding
Fig.3 Flow chart of AG-sub-task time synchronization processing
Fig.4 Virtual elderly care scenario map
Fig.5 Pareto solution set for task execution scheme of McmrTAF
Fig.6 Comparison of subjective perception of caregiver and the elderly and final scenario: two scenarios with large differences in implementation
Fig.7 Comparison of subjective perception of caregiver and the elderly and final scenario: two scenarios with same implementation
Fig.8 Comparison chart of subjective perceptions of caregiver and the elderly and final solution: two implementation scenarios that are similar
[1]   雷霆, 郭娟, 向川 中国人口老龄化风险分布的梯次结构及其动态演进[J]. 人口与经济, 2023, (1): 87- 105
LEI Ting, GUO Juan, XIANG Chuan Echelon structure and dynamic evolution of China’s population aging risk distribution[J]. Population and Economics, 2023, (1): 87- 105
doi: 10.3969/j.issn.1000-4149.2023.00.006
[2]   赵雅婷, 赵韩, 梁昌勇, 等 养老服务机器人现状及其发展建议[J]. 机械工程学报, 2019, 55 (23): 13- 24
ZHAO Yating, ZHAO Han, LIANG Changyong, et al Current situation and development suggestions of old-age service robot[J]. Journal of Mechanical Engineering, 2019, 55 (23): 13- 24
doi: 10.3901/JME.2019.23.013
[3]   钱艺倩 基于人工智能的养老机器人功能设计及发展研究[J]. 智能计算机与应用, 2020, 10 (7): 292- 293
QIAN Yiqian Research on function design and development of pension robot based on artificial intelligence[J]. Intelligent Computer and Applications, 2020, 10 (7): 292- 293
doi: 10.3969/j.issn.2095-2163.2020.07.069
[4]   LUJAK M, FERNÁNDEZ A, ONAINDIA E Spillover algorithm: a decentralised coordination approach for multi-robot production planning in open shared factories[J]. Robot and Computer-Integrated Manufacturing, 2021, 70: 1- 10
[5]   SARKAR C, DEY S, AGARWAL M. Semantic knowledge driven utility calculation towards efficient multi-robot task allocation [C]// IEEE International Conference on Automation Science and Engineering , Munich: IEEE, 2018: 144–147.
[6]   JOHNSON L B, CHOI H L, HOW J P The role of information assumptions in decentralized task allocation: a tutorial[J]. IEEE Control Systems Society, 2016, 36 (4): 45- 58
doi: 10.1109/MCS.2016.2558419
[7]   SEMWAL T, JHA S S, NAIR S B On ordering multi-robot task executions within a cyber physical system[J]. ACM Transactions on Autonomous and Adaptive Systems, 2017, 12 (4): 1- 28
[8]   LERMAN K, JONES C, GALSTYAN A, et al Analysis of dynamic task allocation in multi-robot systems[J]. Journal of Robotics Research, 2006, 25 (3): 225- 241
doi: 10.1177/0278364906063426
[9]   FARINELLI A, IOCCHI L, NARDI D Distributed on-line dynamic task assignment for multi-robot patrolling[J]. Autonomous Robots, 2017, 41 (6): 1321- 1345
doi: 10.1007/s10514-016-9579-8
[10]   NEDJAH N, DE MENDONÇA R M, DE MACEDO MOURELLE L Pso-based distributed algorithm for dynamic task allocation in a robotic swarm[J]. Procedia Computer Science, 2015, 51 (C): 326- 335
[11]   IRFAN M, FAROOQ A. Auction-based task allocation scheme for dynamic coalition formations in limited robotic swarms with heterogeneous capabilities [C]// International Conference on Intelligent Systems Engineering . Islamabad: IEEE, 2016: 210–215.
[12]   CHEN J, YANG Y, WU Y. Multi-robot task allocation based on robotic utility value and genetic algorithm [C]// Proceedings of 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems . Shanghai: IEEE, 2009: 256–260.
[13]   QIZILBASH A A H, HENKEL C, MOSTAGHIM S. Ant colony optimization based multi-robot planner for combined task allocation and path finding [C]// 17th International Conference on Ubiquitous Robot . Kyoto: IEEE, 2020: 487–493.
[14]   ARSLAN G, MARDEN J R, SHAMMA J S Autonomous vehicle-target assignment: a game-theoretical formulation[J]. Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, 2007, 129 (5): 584- 596
doi: 10.1115/1.2766722
[15]   CHAPMAN A C, MICILLO R A. , KOTA R, et al. Decentralised dynamic task allocation: a practical game-theoretic approach [J]. Proceedings of International Joint Conference on Autonomous Agents and Multiagent Systems, 2009, 2: 680–687.
[16]   DAS G P, MCGINNITY T M, COLEMAN S A, et al A distributed task allocation algorithm for a multi-robot system in healthcare facilities[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 80 (1): 33- 58
[17]   WOO J, WADA K, KUBOTA N. Robot partner system for elderly people care by using sensor network [C]// International Conference on Biomedical Robotics and Biomechatronics . Rome: IEEE, 2012: 1329–1334.
[18]   RAMDANI N, PANAYIDES A, KARAMOUSADAKIS M, et al. A safe, efficient and integrated indoor robotic fleet for logistic applications in healthcare and commercial spaces: the endorse concept [C]// IEEE International Conference on Mobile Data Management . Hong Kong: IEEE, 2019: 425–430.
[19]   MOURADIAN C, SAHOO J, GLITHO R H, et al. A coalition formation algorithm for multi-robot task allocation in large-scale natural disasters [C]// 13th International Wireless Communications and Mobile Computing Conference. Valencia: IEEE, 2017: 1909-1914.
[20]   YANG Q, PARASURAMAN R. Needs-driven heterogeneous multi-robot cooperation in rescue missions [C]// IEEE International Symposium on Safety, Security, and Rescue Robotics. Abu Dhabi: IEEE, 2020: 252–259.
[21]   李勇, 李坤成, 孙柏青, 等 智能体Petri网融合的多机器人-多任务协调框架[J]. 自动化学报, 2021, 47 (8): 2029- 2049
LI Yong, LI Kuncheng, SUN Baiqing, et al Multi-robot-multi-task coordination framework based on the integration of intelligent agent and Petri net[J]. Acta Automatica Sinica, 2021, 47 (8): 2029- 2049
[1] Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.
[2] Ruoqiong LI,Yuan WENG,Xin LI. Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 141-151.
[3] Qianlin YE,Wanliang WANG,Zheng WANG. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1107-1120.
[4] Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.
[5] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[6] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.
[7] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[8] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[9] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[10] Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
[11] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[12] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.
[13] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[14] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[15] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.