Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (1): 141-151    DOI: 10.3785/j.issn.1008-973X.2025.01.014
    
Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system
Ruoqiong LI1(),Yuan WENG1,Xin LI2,*()
1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(1234KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The magnetically-coupled resonant bidirectional wireless power transfer (BD-WPT) system has many parameters, and the problems of inconsistent influence on the system and difficult parameter configuration were caused by the parameters. Combining the grey relation analysis (GRA) with the multi-objective particle swarm optimization (MOPSO) algorithm, a multi-objective parameter optimization method for fractional-order magnetically-coupled resonant BD-WPT system was proposed. Based on the analysis of the system’s transmission characteristics and coil parameter analytical expressions, the GRA was employed to assess the influence of each system parameter and identify five core parameters. With the aim of enhancing the system’s transmission efficiency and coil power density, the MOPSO algorithm was utilized to optimize the system parameters. Results showed that the GRA allowed for the selective optimization of the core parameters so that the solution set output by the algorithm is better than the solution set without GRA. In light of the actual requirements of electric vehicles, the optimal solution was chosen as a reference for the design of the BD-WPT system. The simulation results indicated that compared with the national standard parameter symmetric system, the transmission efficiency of the BD-WPT system had increased by 4.5 percentage points, and the coil power density had risen by 0.42 kW/m2.



Key wordsbidirectional wireless power transfer (BD-WPT)      magnetically-coupled resonant      grey relation analysis (GRA)      multi-objective optimization      multi-objective particle swarm optimization (MOPSO) algorithm     
Received: 29 November 2023      Published: 18 January 2025
CLC:  TP 724  
Fund:  国家自然科学基金资助项目(51767015);甘肃省科技计划甘肃省自然科学基金重点项目(22JR5RA317);甘肃省高等学校产业支撑计划项目(2023CYZC-39).
Corresponding Authors: Xin LI     E-mail: liruoqiong26@163.com;lxfp167@163.com
Cite this article:

Ruoqiong LI,Yuan WENG,Xin LI. Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 141-151.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.01.014     OR     https://www.zjujournals.com/eng/Y2025/V59/I1/141


分数阶磁耦合谐振双向无线电能传输系统参数优化

磁耦合谐振双向无线电能传输(BD-WPT)系统的参数多,导致系统影响程度不一致和参数配置困难,为此结合灰色关联度分析(GRA)和多目标粒子群优化(MOPSO)算法提出分数阶磁耦合谐振BD-WPT系统多目标参数优化方法. 在分析系统传输特性和线圈参数解析式的基础上,采用GRA进行系统各个参数的影响评估,确定了5个核心参数. 为了提高系统传输效率和线圈功率密度,采用MOPSO算法优化系统参数,结果表明通过GRA有选择性地优化核心参数,可使算法输出的解集优于未采用GRA的解集. 结合电动汽车实际需求,选取最优解用于BD-WPT系统的设计参考. 仿真结果显示,相校于国标参数对称系统,BD-WPT系数的传输效率提高了4.5个百分点,线圈功率密度提高了0.42 kW/m2.


关键词: 双向无线电能传输(BD-WPT),  磁耦合谐振,  灰色关联度分析(GRA),  多目标优化,  多目标粒子群优化(MOPSO)算法 
Fig.1 Structure diagram of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system
Fig.2 Equivalent circuit of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system
Fig.3 Equivalent model of non-tightly wound planar circular spiral coil
Fig.4 Mutual inductance model between planar concentric ring current carrying lines
Fig.5 Calculation model of coil mutual inductance
系统η/%f/kHzLf/μHCf/nFLt/μHRM/μHr1/mh/mN
189.8685.52017443.80.3411.300.280.1511
287.3880.01526415.00.154.080.200.107
389.0483.51820429.00.247.610.250.139
492.1587.02513471.00.4720.000.350.1712
592.9090.030104106.00.6329.300.400.2014
Tab.1 Parameters of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system
系统ηfLfCfLtRMr1hN
11.001.001.001.001.001.001.001.001.001.00
20.970.940.751.520.340.430.360.710.670.64
30.990.970.901.180.660.710.670.890.870.82
41.031.021.250.771.621.351.761.251.131.09
51.031.051.500.602.431.842.591.431.331.27
Tab.2 Parameter normalization results of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system
系统$\xi $
fLfCfLtRMr1hN
11.001.001.001.001.001.001.001.001.00
20.950.780.590.550.590.560.750.720.70
30.970.900.810.700.730.710.890.860.82
40.990.780.750.570.700.510.780.880.92
50.980.620.640.360.490.330.660.720.76
关联度0.980.810.760.640.700.620.820.840.84
Tab.3 Grey relation degree and grey relation coefficient of factors affecting transmission efficiency of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system
Fig.6 Flow chart of multi-objective particle swarm optimization algorithm for system parameters
Fig.7 Pareto frontier solution of multi-objective particle swarm optimization algorithm
Fig.8 Comparison of algorithm optimization results before and after grey relation analysis
f/HzLf/Hr1/mh/mNη/%ρ/(kW·m?2)
90 0002.98×10?50.450.101596.354.91
89 9832.02×10?50.440.101195.846.68
88 1183.28×10?50.430.10794.7110.47
90 0003.32×10?50.380.10592.9817.78
Tab.4 Partial frontier solution in results of multi-objective particle swarm optimization algorithm
参数数值参数数值
f/kHz90N6
Lf/μH24.03Cα/(F·sα?1)1.798×10?7
r1/m0.44α1.008
h/m0.10Cf/nF130.4
R0.276η/%94.32
Lt/μH39.71ρ/(kW·m?2)12.35
Tab.5 Parameters optimised by multi-objective particle swarm optimization algorithm
Fig.9 Switching signal waveforms of bidirectional wireless power transfer system
Fig.10 Secondary side output power of bidirectional wireless power transfer system optimized by multi-objective particle swarm optimization algorithm
Fig.11 Coil loss power of bidirectional wireless power transfer system optimized by multi-objective particle swarm optimization algorithm
Fig.12 Secondary side output power of bidirectional wireless power transfer system with symmetrical parameters in national standard
Fig.13 Coil loss power of bidirectional wireless power transfer system with symmetrical parameters in national standard
[1]   LI H Z, TAN L L, WANG R Y, et al Research and improvement of oscillation problems caused by active rectifier circuits in EV-WPT systems[J]. IEEE Transactions on Power Electronics, 2023, 38 (10): 13231- 13242
doi: 10.1109/TPEL.2023.3295841
[2]   陈志鑫, 张献, 沙琳, 等 基于频率调节的电动汽车无线充电互操作性提升方法研究[J]. 电工技术学报, 2023, 38 (5): 1237- 1247
CHEN Zhixin, ZHANG Xian, SHA Lin, et al Research on improving interoperability of electric vehicle wireless power transfer based on drequency adjustment[J]. Transactions of China Electrotechnical Society, 2023, 38 (5): 1237- 1247
[3]   范兴明, 贾二炬, 高琳琳, 等 基于目标参数最优的磁耦合谐振式无线能量传输系统频率特性分析及仿真验证[J]. 上海交通大学学报, 2020, 54 (4): 430- 440
FAN Xingming, JIA Erju, GAO Linlin, et al Analysis and simulation of frequency characteristic based on optimal objective parameter in magnetically-coupled resonant wireless power transfer system[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (4): 430- 440
[4]   HOU Y J, FENG G W, LIU Z Z, et al Research on Dual-LCC MCRWPT system based on controlled rectifier[J]. Energy Reports, 2022, 8 (Suppl. 4): 823- 836
[5]   李欣, 徐积强 基于混杂自动机的双向ICPT系统建模及控制[J]. 电力自动化设备, 2022, 42 (4): 107- 113
LI Xin, XU Jiqiang Modeling and control of bidirectional ICPT system based on hybrid automata[J]. Electric Power Automation Equipment, 2022, 42 (4): 107- 113
[6]   SETH A K, SINGH M Resonant controller of single-stage off-board EV charger in G2V and V2G modes[J]. IET Power Electronics, 2020, 13 (5): 1086- 1092
doi: 10.1049/iet-pel.2019.1111
[7]   张波, 荣超, 江彦伟, 等 分数阶无线电能传输机理的提出及研究进展[J]. 电力系统自动化, 2022, 46 (4): 197- 207
ZHANG Bo, RONG Chao, JIANG Yanwei, et al Proposal process and research progress of fractional-order wireless power transfer mechanism[J]. Automation of Electric Power Systems, 2022, 46 (4): 197- 207
[8]   JIANG Y W, ZHANG B A fractional-order wireless power transfer system insensitive to resonant frequency[J]. IEEE Transactions on Power Electronics, 2020, 33 (5): 5496- 5505
[9]   李若琼, 翁源, 李欣 基于等效阻抗的分数阶RLCα串联谐振BD-WPT系统传输特性分析[J]. 云南大学学报: 自然科学版, 2024, 46 (3): 460- 468
LI Ruoqiong, WENG Yuan, LI Xin Analysis of transmission characteristics of fractional-order RLCα series resonant BD-WPT system based on equivalent impedance[J]. Journal of Yunnan University: Natural Sciences Edition, 2024, 46 (3): 460- 468
[10]   谢文燕, 陈为 基于组合补偿网络的抗偏移恒流输出无线电能传输系统研究[J]. 电工技术学报, 2022, 37 (6): 1495- 1512
XIE Wenyan, CHEN Wei Research on anti-offset constant-current output wireless power transfer system based on combined compensation network[J]. Transactions of China Electrotechnical Society, 2022, 37 (6): 1495- 1512
[11]   张艺明, 王辉, 沈志伟, 等 利用混合拓扑实现强抗偏移性能的紧凑型电动汽车无线充电系统[J]. 中国电机工程学报, 2022, 42 (8): 2979- 2986
ZHANG Yiming WANG Hui, SHEN Zhiwei, et al. Misalignment-tolerant compact electric vehicle wireless charging system by using hybrid topology[J]. Proceedings of the CSEE, 2022, 42 (8): 2979- 2986
[12]   曹娟, 张婉青, 徐年富, 等 平面圆形螺线圈电感参数计算[J]. 兵器装备工程学报, 2021, 42 (10): 86- 90
CAO Juan, ZHANG Wanqing, XU Nianfu, et al Calculation of inductance parameters of planar circular spiral coil[J]. Journal of Ordnance Equipment Engineering, 2021, 42 (10): 86- 90
[13]   QU X H, JING Y Y, HAN H D, et al Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints[J]. IEEE Transactions on Power Electronics, 2017, 32 (1): 394- 405
doi: 10.1109/TPEL.2016.2535376
[14]   马涛, 苏玉刚, 王子驰, 等 LCC-S型无线电能传输系统的磁耦合机构参数多目标优化技术[J]. 重庆大学学报, 2023, 46 (4): 52- 63
MA Tao, SU Yugang, WANG Zichi et al. Multi-objective optimization technology for parameters of magnetic coupler of LCC-S type MC-WPT system[J]. Journal of Chongqing University, 2023, 46 (4): 52- 63
[15]   蒋昭, 赵晋斌, 张俊伟, 等 基于DS-LCC拓扑抗偏移性的建模与优化[J]. 电力系统保护与控制, 2022, 50 (15): 99- 108
JIANG Zhao, ZHAO Jinbin, ZHANG Junwei, et al Modeling and optimization of anti-offset based on DS-LCC topology[J]. Power System Protection and Control, 2022, 50 (15): 99- 108
[16]   张云, 王丽芳, 郭彦杰, 等 基于NSGA-Ⅱ算法的无线充电系统磁耦合机构多目标优化[J]. 电工电能新技术, 2020, 39 (12): 28- 34
ZHANG Yun, WANG Lifang, GUO Yanjie, et al Multi-objective optimization of magnetic coupler for wireless power transfer system based on NSGA-II algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39 (12): 28- 34
[17]   刘旭, 宋翔昱, 原熙博, 等 一种利用可切换补偿电容的三线圈无线电能传输系统互感识别及效率优化方法[J]. 中国电机工程学报, 2022, 42 (22): 8309- 8320
LIU Xu, SONG Xiangyu, YUAN Xibo, et al A mutual inductance identification and efficiency optimization method for the three-coil wireless power transfer system by utilizing switchable compensation capacitor[J]. Proceedings of the CSEE, 2022, 42 (22): 8309- 8320
[18]   CHEN Y F, ZHANG H L, SHIN C S, et al An efficiency optimization-based asymmetric tuning method of double-sided LCC compensated WPT system for electric vehicles[J]. IEEE Transactions on Power Electronics, 2020, 35 (11): 11475- 11487
doi: 10.1109/TPEL.2020.2984712
[19]   童晓阳, 张绍迅 基于灰色关联度的配电网故障区段定位与类型识别方法[J]. 电力系统自动化, 2019, 43 (4): 113- 118
TONG Xiaoyang, ZHANG Shaoxun Grey relational degree based on fault section location and type recognition method for distribution network[J]. Automation of Electric Power Systems, 2019, 43 (4): 113- 118
[20]   张政, 张波 MCR-WPT系统高频逆变器综合性能的定量评价[J]. 电测与仪表, 2020, 57 (20): 134- 140
ZHANG Zheng, ZHANG Bo Quantitative evaluation of comprehensive performance of MCR-WPT system high frequency inverter[J]. Electrical Measurement and Instrumentation, 2020, 57 (20): 134- 140
[21]   靳夏. 移动式ICPT系统谐振补偿结构与参数优化研究[D]. 兰州: 兰州交通大学, 2019: 1–66.
JIN Xia. Research on resonance compensation structure and parameter optimization of mobile ICPT system [D]. Lanzhou: Lanzhou Jiaotong University, 2019: 1–66.
[22]   向利娟, 孙跃, 胡超, 等 基于AHP和FCE的IPTS电磁机构性能评价[J]. 中国电机工程学报, 2017, 37 (3): 848- 856
XIANG Lijuan, SUN Yue, HU Chao, et al Performance evaluation for magnetic couplers in IPTS using AHP and FCE[J]. Proceedings of the CSEE, 2017, 37 (3): 848- 856
[23]   GARCÍA-IZQUIERDO O, SANZ J F, VILLA J L, et al Optimal design of a Low-Cost SAE JA2954 compliant WPT system using NSGA-II[J]. Computers and Industrial Engineering, 2023, 184: 109536
doi: 10.1016/j.cie.2023.109536
[24]   李欣, 赵乐 计及信号与电能同步传输影响的ICPT系统谐振参数优化方法[J]. 电力自动化设备, 2020, 40 (8): 147- 153
LI Xin, ZHAO Le Resonance parameter optimization of ICPT system considering influence on synchronous transmission of signal and power energy[J]. Electric Power Automation Equipment, 2020, 40 (8): 147- 153
[25]   杨云虎, 梁大壮, 洪若飞, 等 遗传算法对三线圈无线电能传输系统参数优化[J]. 电机与控制学报, 2023, 27 (8): 122- 129
YANG Yunhu, LIANG Dazhuang, HONG Ruofei, et al Parameter optimization of three coils by genetic algorithm for wireless power transmission systems[J]. Electric Machines and Control, 2023, 27 (8): 122- 129
[26]   吴晓伟, 刘宏昭 约束型粒子群的LCC/S磁谐振耦合机构参数优化算法[J]. 机械科学与技术, 2022, 41 (1): 127- 133
WU Xiaowei, LIU Hongzhao Parameter optimization of LCC/S type magnetic resonance coupling mechanism with constrained particle swarm algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41 (1): 127- 133
[27]   李阳, 黄悦蓬, 刘雪莉, 等 动态无线电能传输系统多目标粒子群优化方法[J]. 电工电能新技术, 2022, 41 (8): 41- 50
LI Yang, HUANG Yuepeng, LIU Xueli et al. Multi-objective particle swarm optimization method for dynamic WPT system[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41 (8): 41- 50
[1] Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.
[2] Qianlin YE,Wanliang WANG,Zheng WANG. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1107-1120.
[3] Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.
[4] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[5] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.
[6] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[7] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[8] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[9] Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
[10] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[11] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.
[12] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[13] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[14] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
[15] Jia-shuang FAN,Sui-huai YU,Jian-jie CHU,Hui WANG,Chen CHEN,Wen-zhe CUN,Tian CHEN,Jia-yan GUO. Optimal decision-making method of design scheme in cloud service mode[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 143-151.