Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (2): 362-374    DOI: 10.3785/j.issn.1008-973X.2025.02.014
    
Vehicle collision severity minimization strategy in unavoidable collision scenario
Shencun YE1(),Bing ZHOU1,*(),Tian CHAI1,Nianfei GAN1,Shuai HE2
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
2. Schaeffler Intelligent Driving Technology (Changsha) Limited Company, Changsha 410036, China
Download: HTML     PDF(1958KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A collision severity minimization strategy based on hierarchical structure of decision layer and motion control layer was proposed aiming at how to effectively reduce vehicle collision severity and ensure high real-time response in unavoidable collision scenarios. The post-collision instability risk was estimated by using the four-degree-of-freedom collision model and the vehicle state before the collision by considering that the offline trajectory library was generated by solving the optimal control problem under the constraints of vehicle dynamics. The collision severity assessment model was used to evaluate the collision risk and post-collision instability risk of the trajectory library. The optimal trajectory was determined from the trajectory library in a very short time during decision making. A collaborative controller for trajectory tracking and yaw stability was established based on model predictive control in the motion control layer in order to maintain trajectory tracking accuracy and vehicle stability. The effectiveness of the proposed collision severity minimization strategy was verified by simulation in different scenarios. The simulation results show that the proposed collision severity minimization strategy can effectively reduce vehicle collision severity while ensuring vehicle stability under different working conditions.



Key wordsunavoidable collision      collision severity      four-degree-of-freedom collision model      trajectory tracking      yaw stability     
Received: 29 December 2023      Published: 11 February 2025
CLC:  U 463  
Fund:  福建省自然科学基金资助项目(2023J01245);湖南大学整车先进设计制造技术全国重点实验室开放基金资助项目(32065008).
Corresponding Authors: Bing ZHOU     E-mail: ysc980608@163.com;zhou_bingo@163.com
Cite this article:

Shencun YE,Bing ZHOU,Tian CHAI,Nianfei GAN,Shuai HE. Vehicle collision severity minimization strategy in unavoidable collision scenario. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 362-374.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.02.014     OR     https://www.zjujournals.com/eng/Y2025/V59/I2/362


不可避撞场景下的车辆碰撞损伤最小化策略

针对不可避撞场景下如何有效地减小车辆碰撞损伤并保证响应的高实时性,提出采用决策层和运动控制层分层结构的碰撞损伤最小化策略. 考虑在车辆动力学约束的情况下通过求解最优控制问题生成离线轨迹库,通过四自由度碰撞模型和碰撞前的车辆状态来估计碰后自车失稳风险,通过碰撞损伤评估模型在线评估轨迹库中轨迹的碰撞时风险和碰后自车失稳风险,在决策时以极短时间从轨迹库中确定出最优轨迹. 在运动控制层,为了保持轨迹跟踪精度和车辆稳定性,基于模型预测控制建立轨迹跟踪与横摆稳定性协同控制器. 在不同场景下进行仿真,验证所提出的碰撞损伤最小化策略的有效性. 仿真结果表明,所提出的碰撞损伤最小化策略能够在保证不同工况下车辆稳定性的同时,有效地减小车辆碰撞损伤.


关键词: 不可避撞,  碰撞损伤,  四自由度碰撞模型,  轨迹跟踪,  横摆稳定性 
Fig.1 Seven-degree-of-freedom vehicle dynamics model
参数数值参数数值参数数值
$ {a}_{0} $1.3$ {a}_{6} $0$ {b}_{3} $49.6
$ {a}_{1} $?22.1$ {a}_{7} $?0.354$ {b}_{4} $226
$ {a}_{2} $1011$ {a}_{8} $0.707$ {b}_{5} $0.069
$ {a}_{3} $1078$ {b}_{0} $1.65$ {b}_{6} $?0.069
$ {a}_{4} $1.82$ {b}_{1} $?21.5$ {b}_{7} $0.056
$ {a}_{5} $0.208$ {b}_{2} $1144$ {b}_{8} $0.486
Tab.1 Coefficient of magic formula tire model
Fig.2 Schematic diagram of vehicle model with impact forces applied
Fig.3 Planar view of colliding vehicle
参数数值
整车质量 m/kg1 230
簧上质量 mR/kg1 110
簧下质量 mNR/kg120
簧上质量惯量积 Ixz/(kg?m2)40
簧上质量绕$ {x} $轴转动惯量 Ixxs/(kg?m2)440.6
总悬架侧倾刚度 Ks/(N?m·rad?1)61 000
总悬架侧倾阻尼 Ds/(N?m?s·rad?1)4 120
Tab.2 Some parameters of vehicle model
Fig.4 Simulation scenario of two-vehicle collision
Fig.5 Comparison of vehicle status for post-impact
Fig.6 Structure of collision severity minimization strategy
Fig.7 Trajectory library for initial velocity of 15 m/s
Fig.8 Trajectory library for different initial velocity
Fig.9 Diagram of vehicle body division
Fig.10 Diagram of P2 impact location
碰撞位置碰撞损伤CSI(P)
5(F1)1
10(F2)2
3或7(P2)3
2或8(P1)4
4或6(B0)5
1、2或8、9(Y1)6
1或9(F0)7
3、4或6、7(Z1)8
2、3、4或6、7、8(Z0)9
1、2、3、4或6、7、8、9(D0)10
2、3或7、8(P0)11
1、2、3或7、8、9(Y0)12
Tab.3 Collision severity related to collision position
Fig.11 Scene of two-car collision at T-junction
Fig.12 Result of collision prediction in two-car scenario
轨迹编号碰撞位置$ {k}_{1}{\rm{CSI}}\left(P\right) $$ {k}_{2}\Delta V $$ {k}_{3}{\rm{CSI}}\left(\omega \right) $$ {\rm{CSI}} $
56(B0)200156.6113.1469.7
447(P2)120147.293.3360.5
897、8(P0)440126.473.6640
1368(P1)160103.779.8343.5
1969(F0)28098.394.5472.8
Tab.4 Result of collision severity in two-car scenario
Fig.13 Simulation result in two-vehicle scenario
Fig.14 Multi-vehicle collision scene at intersection
Fig.15 Result of collision prediction in multi-vehicle scenario
轨迹编号碰撞位置$ {k}_{1}{\rm{CSI}}\left(P\right) $$ {k}_{2}\Delta V $$ {k}_{3}{\rm{CSI}}\left(\omega \right) $$ {\rm{CSI}} $
787(P2)12078.361.7260.0
968(P1)1608463.1307.1
1239(F0)2809173.2444.2
1876(B0)200109.568.5378.0
2307(P2)120113.258.4291.6
Tab.5 Result of collision severity in multi-vehicle scenario
Fig.16 Simulation result in multi-vehicle scenario
[1]   肖乐, 周华, 王朝健, 等 交叉口车车碰撞事故车损程度的影响要素[J]. 汽车安全与节能学报, 2023, 14 (1): 23- 30
XIAO Le, ZHOU Hua, WANG Chaojian, et al Influencing factors of vehicle damage degree in vehicle-vehicle collision accident at intersection[J]. Journal of Automotive Safety and Energy, 2023, 14 (1): 23- 30
doi: 10.3969/j.issn.1674-8484.2023.01.003
[2]   赵琳娜, 贾兴无, 戴帅, 等 中国城市道路交通安全特点解析[J]. 城市交通, 2018, 16 (3): 9- 20
ZHAO Linna, JIA Xingwu, DAI Shuai, et al Characteristics of urban road traffic safety in China[J]. Urban of Transport, 2018, 16 (3): 9- 20
[3]   宋健, 王伟玮, 李亮, 等 汽车安全技术的研究现状和展望[J]. 汽车安全与节能学报, 2010, 1 (2): 98- 106
SONG Jian, WANG Weiwei, LI Liang, et al Research status and prospects of automotive safety technology[J]. Journal of Automotive Safety and Energy, 2010, 1 (2): 98- 106
doi: 10.3969/j.issn.1676-8484.2010.02.002
[4]   CUI Q, DING R, WU X, et al A new strategy for rear-end collision avoidance via autonomous steering and differential braking in highway driving[J]. International Journal of Vehicle Mechanics and Mobility, 2020, 58 (6): 955- 986
[5]   ZHU S, WEI B, CHEN C, et al Emergency steering collision avoidance control based on distributed driving intelligent vehicles[J]. Concurrency and Computation-Practice and Experience, 2023, 35 (2): e7486
doi: 10.1002/cpe.7486
[6]   PAN Q, ZHOU B, WU X, et al A high-speed human-like collision avoidance controller based on a neural network under different road adhesion coefficients[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 238 (7): 1- 15
[7]   VANGI D, VIRGA A, GULINO M Combined activation of braking and steering for automated driving systems: adaptive intervention by injury risk-based criteria[J]. Procedia Structural Integrity, 2019, 24: 423- 436
doi: 10.1016/j.prostr.2020.02.039
[8]   VANGI D A simplified model for analysis of the post-impact motion of vehicles[J]. Proceedings of the institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227 (6): 779- 788
doi: 10.1177/0954407012470353
[9]   VANGI D, BEGANI F, GULINO M, et al A vehicle model for crash stage simulation[J]. 9th Vienna International Conference on Mathematical Modelling, 2018, 51: 837- 842
[10]   PARSEH M, NYBACKA M, ASPLUND F Motion planning for autonomous vehicles with the inclusion of post-impact motions for minimising collision risk[J]. Vehicle System Dynamic, 2023, 61 (6): 1707- 1733
doi: 10.1080/00423114.2022.2088396
[11]   WANG H, HUANG Y, KHAJEPOUR A, et al. Local path planning for autonomous vehicles: crash mitigation [C]// IEEE Intelligent Vehicles Symposium . Changshu: IEEE, 2018: 1602-1607.
[12]   PARSEH M, ASPLUND F, MIKAEL N, et al. Pre-crash vehicle control and manoeuvre planning: a step towards minimizing collision severity for highly automated vehicles [C]// IEEE International Conference of Vehicular Electronics and Safety . Cairo: IEEE, 2019: 41-47.
[13]   LI D, ZHANG J, XIAO B, et al Vehicle crash mitigation strategy in unavoidable collision scenarios: focusing on motion planning by considering a generalized crash severity model[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44 (12): 15
[14]   ZHOU J, PENG H, LU J Collision model for vehicle motion prediction after light impacts[J]. Vehicle System Dynamic, 2008, 46: 3- 15
[15]   DE C, RUNARSSON A, GRANUM F, et al. Collision avoidance at intersections: a probabilistic threat-assessment and decision-making system for safety interventions [C]// IEEE 17th International Conference on Intelligent Transportation Systems . Qingdao: IEEE, 2014: 649-654.
[16]   PARSEH M, ASPLUND F, SVENSSON L, et al A data-driven method towards minimizing collision severity for highly automated vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6 (4): 723- 735
doi: 10.1109/TIV.2021.3061907
[17]   KONONEN D, FLANNAGAN C, WANG S Identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes[J]. Accident Analysis and Prevention, 2011, 43 (1): 112- 122
doi: 10.1016/j.aap.2010.07.018
[18]   陈龙, 邹凯, 蔡英凤, 等 基于NMPC的智能汽车纵横向综合轨迹跟踪控制[J]. 汽车工程, 2021, 43 (2): 153- 161
CHEN Long, ZOU Kai, CAI Yingfeng, et al Longitudinal and lateral comprehensive trajectory tracking control of intelligent vehicles based on NMPC[J]. Automotive Engineering, 2021, 43 (2): 153- 161
[1] Yicheng LIU,Jialing YANG,Rui TANG,Jing CHENG. Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 351-361.
[2] Meng-qing HONG,Meng DING,Xiu-tao GU,Yu GUO. Fixed time trajectory tracking control for dual-arm space robot[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1168-1174.
[3] Rui YU,Xue-feng XU,Hua ZHOU,Hua-yong YANG. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 436-443.
[4] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[5] Hai-dong WU,Zhen-li SI. Intelligent vehicle trajectory tracking control based on linear matrix inequality[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 110-117.
[6] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 862-871.
[7] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[8] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 125-132.
[9] TAN Pan-long, SUN Qing-lin, CHEN Zeng-qiang. Application of active disturbance rejection control in trajectory tracking of powered parafoil system[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 992-999.
[10] TAO Guo-liang, ZHOU Chao-chao, SHANG Ce. Pneumatic position servo embedded controller and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 792-799.
[11] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 259-264.
[12] LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(6): 1124-1128.
[13] CHEN Shao-Bin, JIANG Jing-Ping. Optimal state feedback control for trajectory tracking of four-wheel mobile robot[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(12): 2186-2190.