Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (8): 1618-1627    DOI: 10.3785/j.issn.1008-973X.2024.08.009
    
Energy-saving and carbon-reducing operation control and engineering verification of circulating fluidized bed boiler
Qinwu LI1,2,3(),Libin YU1,3,Tingyu LIU2,Jingxu ZHANG2,Weiguo WEN4,Zhengjie ZHENG2,Tao WANG2,Hai WANG2,Chenghang ZHENG1,3,*(),Xiang GAO1,3
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Zhejiang Hope Environmental Protection Engineering Limited Company, Hangzhou 310012, China
3. Institute of Carbon Neutrality, Zhejiang University, Hangzhou 310027, China
4. Jiaxing Research Institute, Zhejiang University, Jiaxing 314001, China
Download: HTML     PDF(1971KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cooperative control model based on volume fraction of oxygen in flue gas and furnace outlet pressure was established in order to accurately predict the trend of real-time volume fraction of oxygen and provide control instructions for the secondary air fan and induced draft fan of the boiler in advance. Then the fluctuation of key operating parameters such as volume fraction of oxygen and furnace outlet pressure of the boiler was significantly reduced under different load conditions. The industrial validation results on a 300 t/h circulating fluidized bed boiler show that the cooperative control model can improve the quality of boiler operation and control. The statistical probability that the volume fraction of oxygen was controlled within the target value of ±0.25%, and the furnace outlet pressure was controlled within the target value of ±45 Pa under varying load conditions was 99%. The statistical results of one week’s operation showed that the cooperative control model could reduce coal consumption per unit of steam production by 1.508%, and fan power consumption per unit of steam production by 1.886% compared with the original control.



Key wordsvolume fraction of oxygen      cooperative control model      furnace outlet pressure      energy saving and carbon reduction     
Received: 27 December 2023      Published: 23 July 2024
CLC:  X 51  
Fund:  国家自然科学基金资助项目(42341208);中央高校基本科研业务费专项资金资助项目(2022ZJJH02-03).
Corresponding Authors: Chenghang ZHENG     E-mail: 727180194@qq.com;zhengch2003@zju.edu.cn
Cite this article:

Qinwu LI,Libin YU,Tingyu LIU,Jingxu ZHANG,Weiguo WEN,Zhengjie ZHENG,Tao WANG,Hai WANG,Chenghang ZHENG,Xiang GAO. Energy-saving and carbon-reducing operation control and engineering verification of circulating fluidized bed boiler. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1618-1627.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.08.009     OR     https://www.zjujournals.com/eng/Y2024/V58/I8/1618


循环流化床锅炉节能减碳运行调控及工程验证

构建基于烟气中氧气体积分数及炉膛出口压力的锅炉运行协同控制模型,可以实时、准确地预测烟气中氧气体积分数的变化趋势,提前给定锅炉二次风机和引风机控制指令,显著减小了不同负荷条件下锅炉烟气中氧气体积分数、负压等关键运行参数的波动. 在300 t/h循环流化床锅炉上的工业验证结果表明:利用协同控制模型可以提高锅炉运行控制的品质,锅炉变负荷工况条件下烟气中氧气体积分数控制在目标值±0.25%范围内,炉膛出口压力控制在目标值±45 Pa范围内的统计概率为99%. 运行一周的统计结果表明,相比于原有控制,协同控制模型投运后单位产汽量耗煤可以减小1.508%,单位产汽量风机耗电可以减少1.886%.


关键词: 氧气体积分数,  协同控制模型,  炉膛出口压力,  节能减碳 
自变量因变量
一次风机频率烟气中氧气体积分数
二次风机频率炉膛出口压力
总给煤量
引风机频率
Tab.1 Operational variables related to collaborative control model
Fig.1 Feature importance of relevant variables in Catboost model
Fig.2 Schematic diagram of cooperative control model
Fig.3 Comparison between measured and predicted values of volume fraction of oxygen in flue gas
Fig.4 Comparison of actual operational effects between cooperative control model and original control
Fig.5 Comparison of long-term actual operation effects between cooperative control model and original control
控制方法$ q_m $/(t·h?1)$ Q_{\text{m}} $/(t·h?1)$ P_{\text{F}} $/kW$ P_{\text{S}} $/kW$ P_{\text{ID}} $/kW$ C_{\text{coal}} $$ E_{\text{power}} $/(kW·h·t?1)
原有控制191.525.40415.95129.79396.670.132 64.921 2
PSO寻优的协同控制184.824.40404.88115.52381.930.132 04.882 7
WOA寻优的协同控制188.924.67413.13114.41384.540.130 64.828 4
Tab.2 Energy-saving analysis of weekly operation data of cooperative control model
项目原有控制PSO寻优的协同控制WOA寻优的协同控制
给煤量电耗量给煤量电耗量给煤量电耗量
长期均值25.00 t/h940.00 kW24.89 t/h932.65 kW24.62 t/h922.27 kW
年总耗量1.5000×105 t5.64×106 kW·h1.4934×105 t5.60×106 kW·h1.4772×105 t5.53×106 kW·h
标煤折算量1.0714×105 t1.0667×105 t1.0551×105 t
标煤单价1000 元/t0.5 元/(kW·h)1000 元/t0.5 元/(kW·h)1000 元/t0.5 元/(kW·h)
年运行成本10714万元282 万元10667 万元280 万元10551 万元277 万元
年二氧化碳排放质量2.9681×105 t3.22×103 t2.9548×105 t3.19×103 t2.9226×105 t3.15×103 t
成本合计10996万元10947万元10828万元
碳排放合计3.0003×105 t2.9867×105 t2.9541×105 t
Tab.3 Benefit analysis of cooperative control model operation
[1]   ZHENG C, XIAO L, QU R, et al Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst[J]. Chemical Engineering Journal, 2019, 361: 874- 884
[2]   ZHANG Y, LUO C, LU Y, et al Technology development and cost analysis of multiple pollutant abatement for ultra-low emission coal-fired power plants in China[J]. Journal of Environmental Sciences (China), 2023, 123: 270- 280
[3]   HU X, ZHOU T, LI C, et al Investigation on the dynamic characteristics under load regulation in CFB boiler with whole loop model[J]. Chemical Engineering Science, 2024, 287 (4): 119784
[4]   舒坚, 郑成航, 郭一杉, 等 基于动态矩阵算法的湿法脱硫控制系统设计[J]. 动力工程学报, 2020, 40 (1): 44- 50
SHU Jian, ZHENG Chenghang, GUO Yishan, et al Design of a wet flue gas desulfurization control system based on dynamic matrix algorithm[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (1): 44- 50
[5]   王伟同, 范海东, 梁成思, 等 基于随机森林算法的对冲锅炉出口NOx排放量预测模型研究[J]. 热力发电, 2022, 51 (4): 96- 104
WANG Weitong, FAN Haidong, LIANG Chengsi, et al Predictive modeling of NOx outlet of hedged boiler based on random forest[J]. Thermal Power Generation, 2022, 51 (4): 96- 104
[6]   范海东, 陈竹, 赵中阳, 等 1000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报: 工学版, 2023, 57 (4): 675- 682
FAN Haidong, CHEN Zhu, ZHAO Zhongyang, et al Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 675- 682
[7]   WANG P, SI F, CAO Y, et al Prediction of superheated steam temperature for thermal power plants using a novel integrated method based on the hybrid model and attention mechanism[J]. Applied Thermal Engineering, 2022, 203: 117899
[8]   ZHU B, REN S, WENG Q, et al A physics-informed neural network that considers monotonic relationships for predicting NOx emissions from coal-fired boilers[J]. Fuel, 2024, 364: 131026
[9]   徐哲炜, 郑成航, 张涌新, 等 基于改进关联规则算法的燃煤电厂脱硫系统工况参数优化[J]. 中国电机工程学报, 2017, 37 (15): 4408- 4414
XU Zhewei, ZHENG Chenghang, ZHANG Yongxin, et al Operation optimization of flue gas desulfurization system in power plant based on an improved association rules algorithm[J]. Proceedings of the CSEE, 2017, 37 (15): 4408- 4414
[10]   LV Y, LIU J, YANG T, et al A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler[J]. Energy, 2013, 55: 319- 329
[11]   高菲 锅炉燃烧含氧量中的大数据与神经网络技术分析[J]. 工业加热, 2019, 48 (5): 15- 18
GAO Fei Analysis of big data and neural network technology in combustion oxygen content of boiler[J]. Industrial Heating, 2019, 48 (5): 15- 18
doi: 10.3969/j.issn.1002-1639.2019.05.005
[12]   PANG C, DUAN D, ZHOU Z, et al An integrated LSTM-AM and SPRT method for fault early detection of forced-oxidation system in wet flue gas desulfurization[J]. Transactions of the Institution of Chemical Engineers Process Safety and Environmental Protection, Part B, 2022, 160: 242- 254
[13]   HAN X, YAN Y, CHEN Y, et al Monitoring of oxygen content in the flue gas at a coal-fired power plant using cloud modeling techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (4): 953- 963
[14]   崔仕文, 铁治欣, 丁成富, 等 基于偏最小二乘支持向量机的烟气湿法脱硫效率预测模型[J]. 热力发电, 2017, 46 (4): 81- 87
CUI Shiwen, TIE Zhixin, DING Chengfu, et al Prediction model for flue gas wet desulfurization efficiency based on partial least squares support vector machine[J]. Thermal Power Generation, 2017, 46 (4): 81- 87
doi: 10.3969/j.issn.1002-3364.2017.04.081
[15]   耿铭垚, 胡锐, 李凌 火电机组锅炉烟气含氧量预测[J]. 上海理工大学学报, 2021, 43 (4): 319- 324
GENG Mingyao, HU Rui, LI Ling Prediction of oxygen content in boiler flue gas of thermal power unit[J]. University of Shanghai for Science and Technology, 2021, 43 (4): 319- 324
[16]   YIN G, LI Q, ZHAO Z, et al Dynamic NOx emission prediction based on composite models adapt to different operating conditions of coal-fired utility boilers[J]. Environmental Science and Pollution Research International, 2021, 29 (9): 13541- 13554
[17]   刘圣晶, 冯旭刚, 章家岩 基于GA-IGPC的锅炉烟气含氧量控制系统研究与应用[J]. 电脑知识与技术, 2022, 18 (1): 122- 123
LIU Shengjing, FENG Xugang, ZHANG Jiayan Research and application of boiler flue gas oxygen content control system based on GA-IGPC model[J]. Computer Knowledge and Technology, 2022, 18 (1): 122- 123
doi: 10.3969/j.issn.1009-3044.2022.1.dnzsyjs-itrzyksb202201044
[18]   陈宇, 陈昀丛, 武利斌, 等 基于PSO-DMC的SCR脱硝控制策略研究[J]. 装备制造技术, 2023, (2): 74- 76
CHEN Yu, CHEN Yuncong, WU Libin, et al Research on SCR denitrification control strategy based on PSO-DMC[J]. Equipment Manufacturing Technology, 2023, (2): 74- 76
doi: 10.3969/j.issn.1672-545X.2023.02.018
[19]   PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems . Guangzhou: [s. n. ], 2017.
[20]   TANHA J, ABDI Y, SAMADI N, et al Boosting methods for multi-class imbalanced data classification: an experimental review[J]. Journal of Big Data, 2020, 7 (1): 1- 47
[1] Hongzhao DONG,Can JIN,Wei TANG,Yini SHE,Yingying LIN. Back-calculation of outdoor PM2.5 pollutant source around microscale controlled area by genetic-pattern search algorithm[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1296-1304.
[2] Hai-dong FAN,Zhu CHEN,Zhong-yang ZHAO,Cheng-si LIANG,Cheng-hang ZHENG,Xiang GAO. Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 675-682.
[3] Meng GUO,Yu-ru ZHANG,Xing WEI,Wen-jing WANG. Graphene modification in amine-functionalized SBA-15 and its CO2 adsorption capacity[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1588-1596.
[4] Er-hao GAO,Tian-yu SHOU,Bei HUANG,Wei WANG,Yao SHI. Relationship between morphology characteristics of CuCr2O4catalyst and its SCR denitrification activity[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1199-1205.
[5] Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.
[6] Hao-lin WANG,Zhong-yang LUO,Ming-chun HE,Dan SHEN. Effect of gas composition on discharge characteristics of electrostatic precipitator[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2336-2343.
[7] Yan-fei WEI,Rong ZHOU,Min-jie ZHOU,Xiang GAO. Pilot study on combined denitration of SNCR-SCR system in cement furnace[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1986-1992.
[8] Jun-ming WANG,Xing-ya ZHAO,Ling-hong CHEN,Li-xia HAN,Xiang GAO,Ke-fa CEN. Ammonia effect on optical properties of secondary organic aerosols[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1812-1818.
[9] Shu-xin LIU,Zhong-yang LUO,Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG. Process and characteristics of capture of particles by charged droplet and acoustic waves[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1282-1290.
[10] Kang-wei LI,Fang YING,Ling-hong CHEN,Xian-jue ZHENG,Li-xia HAN,Xue-cheng WU,Xiang GAO,Ke-fa CEN. Ambient VOCs characteristics and associated effects in urban Hangzhou[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 671-683.
[11] Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.
[12] Jun CHENG,Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN. Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 214-219.
[13] ZHOU Dong, LUO Zhong yang, LU Meng shi, HE Ming chun, CHEN Hao, FANG Meng xiang. Acoustic agglomeration experiments of monodispersed aerosol[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 358-362.
[14] NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping. Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 384-392.
[15] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 145-152.