Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1296-1304    DOI: 10.3785/j.issn.1008-973X.2024.06.019
    
Back-calculation of outdoor PM2.5 pollutant source around microscale controlled area by genetic-pattern search algorithm
Hongzhao DONG1,Can JIN1,Wei TANG2,Yini SHE1,*(),Yingying LIN1
1. ITS Joint Research Institute, Zhejiang University of Technology, Hangzhou 310014, China
2. Hangzhou Institute of Environment Sciences, Hangzhou 310014, China
Download: HTML     PDF(2445KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An effective targeted diagnosis method, distributed traceability method for atmospheric pollutants combining Gaussian plume model and genetic-pattern search algorithm, was proposed, aiming at air pollutants that may occur in the micro-scale control area. The corresponding relationship between the calculated pollutant concentration obtained from pollution backcalculation model and the observation value of the monitoring sensor was used as the objective function. Pattern search algorithm was embedded in the genetic algorithm to speed up the search process of the inverse calculation model, then to inversely calculate the intensity and location of the pollution source. A validation experiment was conducted by monitoring the PM2.5 mass concentration, meteorology and other data based on the atmospheric sensor data of Hangzhou Asian Games cricket stadium in October 2021. Results showed, compared with other methods, the effect of the improved genetic-pattern search algorithm for multi-dimensional variables was better, and the location and intensity of pollution sources could be calculated more quickly and accurately. This research can provide suggested solution for environmental emergencies of air pollution in micro-scale control regions.



Key wordssource inversion      genetic-pattern search algorithm      Gaussian plume model      micro-scale control      tracing of particulate matter pollution     
Received: 29 May 2023      Published: 25 May 2024
CLC:  X 51  
Fund:  浙江省公益技术研究资助项目(LGF20F030001);杭州市农业与社会发展科研资助项目(20201203B158).
Corresponding Authors: Yini SHE     E-mail: qiche@zjut.edu.cn
Cite this article:

Hongzhao DONG,Can JIN,Wei TANG,Yini SHE,Yingying LIN. Back-calculation of outdoor PM2.5 pollutant source around microscale controlled area by genetic-pattern search algorithm. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1296-1304.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.019     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1296


基于遗传-模式搜索算法的微尺度管控区域大气污染物PM2.5溯源

针对微尺度管控区域可能发生的大气污染提出有效的靶向诊断方法?结合高斯烟羽模型和遗传-模式搜索算法的大气污染物分布式溯源方法. 将污染源反算模型得到的污染物理论质量浓度与传感器网络观测值的数据对应关系作为目标函数,使用模式搜索算法嵌入遗传算法加快反算模型的搜索过程,反算得到污染源强度和位置. 依托杭州市亚运板球场馆大气感知器网络进行实验验证,监测2021年10月PM2.5质量浓度、气象数据,对所提出的混合式大气污染溯源方法进行实验验证. 实验结果表明:改进遗传-模式搜索算法对于多维变量的搜索效果较好,能快速精准地反算污染源的位置和强度,可以为微尺度管控区域突发性气体污染防治提供应急决策参考.


关键词: 源强反算,  遗传-模式搜索算法,  高斯烟羽模型,  微尺度管控,  颗粒物污染溯源 
v/(m·s?1白天(太阳辐射)夜晚(云量)
多云无云
<2.0AA、BBEF
2.0~3.0A、BBCEF
3.0~5.0B、CB、CCDE
5.0~6.0C、DC、DDDD
>6.0DDDDD
Tab.1 Atmospheric stability classification of Gaussian plume model
大气稳定度$ {\mathrm{\sigma }}_{y} $$ {\mathrm{\sigma }}_{z} $
A、B$ {0.32(1+0.000\;4x)}^{-{1}/{2}} $$ {0.24(1+0.000\;1x)}^{-{1}/{2}} $
C$ {0.22(1+0.000\;4x)}^{-{1}/{2}} $$ 0.20x $
D$ {0.16(1+0.000\;4x)}^{-{1}/{2}} $$ {0.14(1+0.000\;3x)}^{-{1}/{2}} $
E、F$ {0.11(1+0.000\;4x)}^{-{1}/{2}} $$ {0.08(1+0.015\;0x)}^{-{1}/{2}} $
Tab.2 Diffusion coefficient of Gaussian plume model
Fig.1 Algorithm process of genetic-pattern search algorithm
Fig.2 Distribution of air pollution sensors
编号数据类型经度纬度N
1PM2.5、PM10质量浓度120.0332° E30.2305° N996 906
2风速风向、PM2.5、PM10质量浓度120.0360° E30.2322° N62 166
3风速风向、PM2.5、PM10质量浓度120.0359° E30.2289° N588 295
4PM2.5、PM10质量浓度120.0336° E30.2283° N540 618
5风速风向、PM2.5、PM10质量浓度120.0311° E30.2274° N1 027 629
6PM2.5、PM10质量浓度120.0541° E30.2355° N488 188
Tab.3 Sensors locations and data volume of atmospheric perceptron network
Fig.3 PM2.5 mass concentration monitoring data of atmospheric perceptron network
Fig.4 Pre-processed data of PM2.5 mass concentration
传感器序号坐标/m$ {\rho }_{\mathrm{m}\mathrm{e}\mathrm{a}}^{{i}} $/(μg·m?3
1(287.5,345.7)19
2(70.6,135.1)75
3(252.3,37.1)20
4(83.9,?30.3)87
5(?56.2,?98.8)49
6(?230.0,?209.4)19
Tab.4 Sensors locations and PM2.5 mass concentration monitoring values
反算参数q0/(g·s?1x0/my0/m
期望值1.3900
运行结果1.67?7.511.3
Tab.5 Inverse results of genetic-pattern search algorithm
Fig.5 Search hotspot of October pollution source location
算法t/sq0/(g·s?1x0/my0/mΔq0/%Δx0/mΔy0/m
GA-PS2.441.29?7.14.87.2?7.14.8
GA-NM2.571.73?21.14.324.5?21.14.3
PSO-NM2.651.6541.1?35.018.741.1?35.0
Tab.6 Comparison of response time and search accuracy of various algorithms
Fig.6 Search-hotspot comparison of various algorithms
Fig.7 Comparison of stability in coordinate inversion of different algorithms
[1]   CHEN Y, LUO X, ZHAO Z, et al Summer-winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals[J]. Ecotoxicology and Environmental Safety, 2018, 165 (9): 505- 509
[2]   QIU X, DUAN L, CHAI F, et al Deriving high-resolution emission inventory of open biomass burning in China based on satellite observations[J]. Environmental Science and Technology, 2016, 50 (21): 11779- 11779
doi: 10.1021/acs.est.6b02705
[3]   HUANG J, CHEN Z, ZHOU B, et al Cause analysis of PM2.5 pollution during the COVID-19 lockdown in Nanning, China[J]. Scientific Reports, 2021, (11): 11119
[4]   TIAN Y, HARRISON R M, FENG Y, et al Size-resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components[J]. Environmental Pollution, 2021, 289: 117932
[5]   HAUPT S E, HAUPT R L, YOUNG G S A mixed integer genetic algorithm used in biological and chemical defense applications[J]. Soft Computing, 2011, 15 (1): 51- 59
doi: 10.1007/s00500-009-0516-z
[6]   LIU X, ZHAI Z Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals[J]. Indoor Air, 2007, 17 (6): 419- 438
doi: 10.1111/j.1600-0668.2007.00497.x
[7]   WANG Y, HUANG H, HUANG L, et al Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018, 75 (11): 102- 113
[8]   MONACHE L D, LUNDQUIST J K, KOSOVIC B, et al Bayesian inference and Markov Chain Monte Carlo sampling to reconstruct a contaminant source on a continental scale[J]. Journal of Applied Meteorology and Climatology, 2008, 47 (10): 2600- 2613
doi: 10.1175/2008JAMC1766.1
[9]   LEE B, CHO S, LEE S, et al Development of a smoke dispersion forecast system for Korean forest fires[J]. Forests, 2019, 10 (3): 219
doi: 10.3390/f10030219
[10]   ZHANG Q, GUO R, ZHANG C, et al Radioactive airborne effluents and the environmental impact assessment of CAP1400 nuclear power plant under normal operation[J]. Nuclear Engineering and Design, 2014, 280 (12): 579- 585
[11]   BANAN Z, GERNAND J M Emissions of particulate matter due to Marcellus Shale gas development in Pennsylvania: mapping the implications[J]. Energy Policy, 2021, 148 (1): 111979
[12]   HE P, ZHENG B, ZHENG J, et al Urban PM2.5 diffusion analysis based on the improved Gaussian smoke plume model and support vector machine[J]. Aerosol and Air Quality Research, 2018, 18 (12): 3177- 3186
doi: 10.4209/aaqr.2017.06.0223
[13]   AKCELIK V, BIROS G, GHATTAS O, et al A variational finite element method for source inversion for convective-diffusive transport[J]. Finite Elements in Analysis and Design, 2003, 39 (8): 683- 705
doi: 10.1016/S0168-874X(03)00054-4
[14]   MA D, TAN W, ZHANG Z, et al Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm[J]. Journal of Hazardous Materials, 2017, 325: 239- 250
doi: 10.1016/j.jhazmat.2016.11.071
[15]   THOMSON L C, HIRST B, GIBSON G, et al An improved algorithm for locating a gas source using inverse methods[J]. Atmospheric Environment, 2007, 41 (6): 1128- 1134
doi: 10.1016/j.atmosenv.2006.10.003
[16]   梁俊丽, 孔维华, 费文华, 等 基于复杂地形的高斯烟羽模型改进[J]. 环境工程学报, 2016, 10 (6): 5
LIANG Junli, KONG Weihua, FEI Wenhua, et al lmprovement of Gaussian plume model in complex terrain[J]. Chinese Journal of Environmental Engineering, 2016, 10 (6): 5
doi: 10.12030/j.cjee.201501066
[17]   GROSSEL S S Chemical process safety: fundamentals with applications, 2nd edition (2002)[J]. Journal of Loss Prevention in the Process Industries, 2002, 15 (15): 565- 566
[18]   胡鸿昊, 李秀娟, 于俊锋, 等 基于耦合模拟的污水管网入流入渗定量识别[J]. 浙江大学学报:工学版, 2022, 56 (11): 8
HU Honghao, LI Xiujuan, YU Junfeng, et al Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 8
[19]   向胜涛, 王达 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报:工学版, 2022, 56 (1): 11
XIANG Shengtao, WANG Da Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 11
[20]   谢劭峰, 曾印, 张继洪, 等 基于MLP神经网络的大气加权平均温度模型[J]. 大地测量与地球动力学, 2022, 42 (11): 1105- 1110
XIE Shaofeng, ZENG Yin, ZHANG Jihong, et al Atmospheric weighted mean temperature model based on mlp neural network[J]. Journal of Geodesy and Geodynamics, 2022, 42 (11): 1105- 1110
[21]   生态环境部. 污染源源强核算技术指南准则: HJ884—2018 [S]. 北京: 中国环境科学出版社, 2018.
[22]   张建文, 王煜薇, 郑小平, 等 基于混合遗传- Nelder Mead单纯形算法的源强及位置反算[J]. 系统工程理论与实践, 2011, 31 (8): 1581- 1587
ZHANG Jianwen, WANG Yuwei, ZHENG Xiaoping, et al Back-calculation of source strength and position by a hybrid genetic-Nelder Mead simplex algorithm[J]. Systems Engineering: Theory and Practice, 2011, 31 (8): 1581- 1587
[23]   沈泽亚, 郎建垒, 程水源, 等 典型耦合优化算法在源项反演中的对比研究[J]. 中国环境科学, 2019, 39 (8): 3207- 3214
SHEN Zeya, LANG Jianlei, CHENG Shuiyuan, et al Comparative and study on the application of typical hybrid algorithms in source parameter inversions[J]. China Environmental Science, 2019, 39 (8): 3207- 3214
doi: 10.3969/j.issn.1000-6923.2019.08.010
[1] Hai-dong FAN,Zhu CHEN,Zhong-yang ZHAO,Cheng-si LIANG,Cheng-hang ZHENG,Xiang GAO. Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 675-682.
[2] Meng GUO,Yu-ru ZHANG,Xing WEI,Wen-jing WANG. Graphene modification in amine-functionalized SBA-15 and its CO2 adsorption capacity[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1588-1596.
[3] Er-hao GAO,Tian-yu SHOU,Bei HUANG,Wei WANG,Yao SHI. Relationship between morphology characteristics of CuCr2O4catalyst and its SCR denitrification activity[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1199-1205.
[4] Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.
[5] Hao-lin WANG,Zhong-yang LUO,Ming-chun HE,Dan SHEN. Effect of gas composition on discharge characteristics of electrostatic precipitator[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2336-2343.
[6] Yan-fei WEI,Rong ZHOU,Min-jie ZHOU,Xiang GAO. Pilot study on combined denitration of SNCR-SCR system in cement furnace[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1986-1992.
[7] Jun-ming WANG,Xing-ya ZHAO,Ling-hong CHEN,Li-xia HAN,Xiang GAO,Ke-fa CEN. Ammonia effect on optical properties of secondary organic aerosols[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1812-1818.
[8] Shu-xin LIU,Zhong-yang LUO,Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG. Process and characteristics of capture of particles by charged droplet and acoustic waves[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1282-1290.
[9] Kang-wei LI,Fang YING,Ling-hong CHEN,Xian-jue ZHENG,Li-xia HAN,Xue-cheng WU,Xiang GAO,Ke-fa CEN. Ambient VOCs characteristics and associated effects in urban Hangzhou[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 671-683.
[10] Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.
[11] Jun CHENG,Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN. Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 214-219.
[12] ZHOU Dong, LUO Zhong yang, LU Meng shi, HE Ming chun, CHEN Hao, FANG Meng xiang. Acoustic agglomeration experiments of monodispersed aerosol[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 358-362.
[13] NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping. Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 384-392.
[14] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 145-152.
[15] LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2303-2311.