Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (8): 1588-1596    DOI: 10.3785/j.issn.1008-973X.2022.08.013
    
Graphene modification in amine-functionalized SBA-15 and its CO2 adsorption capacity
Meng GUO(),Yu-ru ZHANG,Xing WEI,Wen-jing WANG*()
School of Life Sciences, Hebei University, Baoding 071002, China
Download: HTML     PDF(1962KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The amine-functionalized sorbent, graphene/SBA-15/hyperbranched polymer (G/SBA-15/HBP), was prepared by wet impregnation method for CO2 capture, to improve the adsorption capacity and stability of amine-functionalized SBA-15 and promote its practical application for post-combustion CO2 capture. The microstructure and chemical composition of adsorbents were characterized by SEM, TEM, N2 adsorption, XRD and FTIR. The effects of HBP mass fraction, adsorption temperature and desorption temperature on CO2 adsorption performance were analyzed, and the reaction conditions were optimized. The thermal stability and cycle performance of the adsorbents before and after graphene modification were investigated. With the HBP mass fraction of 50%, the CO2 adsorption capacity of G/SBA-15/HBP was 1.50 mmol/g, increasing by 51.51% as compared to that of conventional SBA-15/HBP. Graphene-doping decreased particle agglomeration and facilitated gas diffusion. Increasing 12% surface area and 31% pore volume of supports benefited the uniform dispersion of loaded HBP and helped to expose more adsorption sites. Graphene-doping improved the thermal stability of amine-functionalized adsorbents and enhanced its working lifespan and cycle stability.



Key wordsgraphene      silica      solid amine      adsorption      CO2 capture     
Received: 11 January 2022      Published: 30 August 2022
CLC:  X 51  
Fund:  国家自然科学基金资助项目(52106141);河北省自然科学基金资助项目 (E2020201022)
Corresponding Authors: Wen-jing WANG     E-mail: guom_mail@126.com;wangwenjing@hbu.edu.cn
Cite this article:

Meng GUO,Yu-ru ZHANG,Xing WEI,Wen-jing WANG. Graphene modification in amine-functionalized SBA-15 and its CO2 adsorption capacity. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1588-1596.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.08.013     OR     https://www.zjujournals.com/eng/Y2022/V56/I8/1588


固胺负载SBA-15的石墨烯改性及其CO2吸附性能

为了提高固胺负载SBA-15的CO2吸附性能及稳定性,推进其在燃烧后CO2捕集中的实际应用,采用湿法浸渍制备新型石墨烯掺杂超支链聚合物(HBP)负载SBA-15(G/SBA-15/HBP)固胺负载吸附剂用于CO2捕集. 通过SEM、TEM、N2吸附、XRD、FTIR对吸附剂的微观结构和化学组成进行表征,研究分析HBP负载量、吸附温度和脱附温度对CO2吸附性能的影响并优化反应条件,探讨石墨烯改性前、后吸附剂的热稳定性和循环性能. 结果表明,当HBP负载量达到50%时,G/SBA-15/HBP的CO2吸附量为1.50 mmol/g,相较传统SBA-15/HBP提升了51.51%. 石墨烯掺杂能减少颗粒团聚,有利于气体扩散;增加载体12%比表面积及31%孔隙容积,有利于负载HBP的均匀分散,暴露更多的吸附位点. 石墨烯掺杂提升了固胺负载吸附剂的热稳定性,提高了吸附剂的使用寿命及循环稳定性.


关键词: 石墨烯,  二氧化硅,  固态胺,  吸附,  CO2捕集 
Fig.1 SEM、TEM images and structure models
Fig.2 N2 adsorption/desorption isotherms
样品 SBET/(m2·g?1) Vtotal/(cm3·g?1) PBJH/ nm
G/SBA-15 666.82 0.89 7.76
SBA-15 595.69 0.68 8.04
G/SBA-15/HBP 37.98 0.074 8.37
SBA-15/HBP 15.44 0.030 16.05
Tab.1 Pore structure parameters before and after HBP loading
Fig.3 Small angle XRD patterns of SBA-15 and G/SBA-15
Fig.4 Infrared spectra of SBA-15 and G/SBA-15 before and after 50% HBP impregnation and CO2 adsorption
Fig.5 Effect of HBP mass fraction and reaction time on CO2 adsorption capacities of G/SBA-15/HBP and SBA-15/HBP
吸附剂类型 θ/℃ p/kPa c/(mmol·g?1) 参考文献
G/SBA-15/HBP (50) 75 100 1.50 本研究
PEI改性碳 75 100 1.09 [41]
石墨纳米带 30 100 0.26 [42]
NaY沸石 50 100 2.17 [43]
Cu-MOF 25 100 0.65 [44]
PEI/SBA-15 25 10 0.65 [45]
氨基硅烷接枝气凝胶 25 100 1.68 [46]
分子印迹吸附剂(MIPs) 60 100 0.48 [47]
PEI 改性膨润土 75 100 1.10 [48]
咪唑基聚离子液体 25 100 0.30 [49]
Tab.2 Comparison of CO2 adsorption performance of G/SBA-15/HBP with other different sorbents
Fig.6 Effect of adsorption and desorption temperatureon on CO2 adsorption capacity of G/SBA-HBP (50)
Fig.7 Thermal stability of G/SBA-15/HBP (50), SBA-15/HBP (50) and HBP with increase of temperature and during cycles (N2 atmosphere)
Fig.8 Cyclic performance of G/SBA-15/HBP (50) and SBA-15/HBP (50)
[1]   CIAIS P, TAN J, WANG X, et al Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient [J]. Nature, 2019, 568 (7751): 221- 225
doi: 10.1038/s41586-019-1078-6
[2]   STERN N. Stern review: the economics of climate change [EB/OL]. [2022-01-01]. https://www.osti.gov/etdeweb/biblio/20838308.
[3]   DUDLEY B. BP statistical review of world energy [R]. London: BP, 2019.
[4]   中国电力企业联合会. 2018年电力统计基本数据一览表 [R]. 北京: 中电联行业发展与环境资源部, 2019.
[5]   史晓斐, 杨思宇, 钱宇, 等 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69 (12): 4931- 4946
SHI Xiao-fei, YANG Si-yu, QIAN Yu, et al Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69 (12): 4931- 4946
[6]   AMMENDOLA P, RAGANATI F, CHIRONE R CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: thermodynamics and kinetics [J]. Chemical Engineering Journal, 2017, 322: 302- 313
doi: 10.1016/j.cej.2017.04.037
[7]   VEGA F, BAENA-MORENO F M, FERNANDEZ L M G, et al Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale [J]. Applied Energy, 2020, 260: 114313
[8]   GUO Y F, TAN C, SUN J, et al Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption [J]. Chemical Engineering Journal, 2020, 381: 122736
[9]   YU M, HAN Y Y, LI J, et al CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors [J]. Chemical Engineering Journal, 2017, 317: 493- 502
doi: 10.1016/j.cej.2017.02.105
[10]   WANG Z H, JIN H H, MENG T, et al Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-airbatteries[J]. Advanced Functional Materials, 2018, 28 (39): 1802596
[11]   HAMZHY M, OPANASENKO M, CONCEPCION P, et al New trends in tailoring active sites in zeolite-based catalysts[J]. Chemical Society Reviews, 2019, 48 (4): 1095- 1149
doi: 10.1039/C8CS00887F
[12]   DU J, LI F, SUN L C Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50 (4): 2663- 2695
doi: 10.1039/D0CS01191F
[13]   WANG M C, DONG R H, FENG X L Two-dimensional conjugated metal-organic frameworks (2Dc-MOFs): chemistry and function for MOFtronics[J]. Chemical Society Reviews, 2021, 50 (4): 2764- 2793
doi: 10.1039/D0CS01160F
[14]   SINGH G, LEE J, KARAKOTI A, et al Emerging trends in porous materials for CO2 capture and conversion [J]. Chemical Society Reviews, 2020, 49 (13): 4360- 4404
doi: 10.1039/D0CS00075B
[15]   赵传文, 陈晓平, 赵长遂 钾基CO2吸收剂再生反应特性 [J]. 工程热物理学报, 2009, 30 (12): 2145- 2148
ZHAO Chuan-wen, CHEN Xiao-ping, ZHAO Chang-sui Characteristics of regeneration reaction of dry potassium-based sorbent for CO2 capture [J]. Journal of Engineering Thermophysics, 2009, 30 (12): 2145- 2148
doi: 10.3321/j.issn:0253-231X.2009.12.047
[16]   雷苏, 曾鹏鑫, 王鹏, 等 Na2CO3基吸附剂颗粒制备及其脱碳性能 [J]. 化工进展, 2019, 38 (8): 3562- 3571
LEI Su, ZENG Peng-xin, WANG Peng, et al Investigation on granulation and CO2 uptake of Na2CO3-based sorbent pellets [J]. Chemical Industry and Engineering Progress, 2019, 38 (8): 3562- 3571
[17]   李扬, 张扬, 刘文强, 等 基于锂循环吸附CO2的燃煤发电系统热力特性研究 [J]. 工程热物理学报, 2020, 41 (11): 2876- 2884
LI Yang, ZHANG Yang, LIU Wen-qiang, et al Study on thermodynamic characteristics of coal-fired power generation system based on lithium looping cycle for CO2 adsorption [J]. Journal of Engineering Thermophysics, 2020, 41 (11): 2876- 2884
[18]   MA L, QIN C L, PI S, et al Fabrication of efficient and stable Li4SiO4-based sorbent pellets via extrusion-spheronization for cyclic CO2 capture [J]. Chemical Engineering Journal, 2020, 379: 122385
[19]   孙超颖, 李英杰, 闫宪尧, 等 钙循环捕集CO2后CaO的水合/脱水热化学储热性能 [J]. 化工进展, 2020, 39 (5): 1734- 1743
SUN Chao-ying, LI Ying-jie, YAN Xian-yao, et al Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cycles [J]. Chemical Progress, 2020, 39 (5): 1734- 1743
[20]   孙荣岳, 叶江明, 陈凌海, 等 Cl含量对钙基吸收剂微观结构以及动力学性能的影响[J]. 化工进展, 2018, 37 (9): 3629- 3634
SUN Rong-yue, YE Jiang-ming, CHEN Ling-hai, et al Effect of Cl content on the microstructure and dynamic performance of calcium-based sorbent[J]. Chemical Progress, 2018, 37 (9): 3629- 3634
[21]   LASHAKI M J, KHIAVI S, SAYARI A Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle [J]. Chemical Society Reviews, 2019, 48 (12): 3320- 3405
doi: 10.1039/C8CS00877A
[22]   HAHN M W, JELIC J, BERGER E, et al Role of amine functionality for CO2 chemisorption on silica [J]. Journal of Physical Chemistry B, 2016, 120 (8): 1988- 1995
doi: 10.1021/acs.jpcb.5b10012
[23]   KIM S N, SON W J, CHOI J S, et al CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis [J]. Microporous and Mesoporous Materials, 2008, 115 (3): 497- 503
doi: 10.1016/j.micromeso.2008.02.025
[24]   OH J, MO Y H, LE V D, et al Borane-modified graphene-based materials as CO2 adsorbents [J]. Carbon, 2014, 79: 450- 456
doi: 10.1016/j.carbon.2014.08.004
[25]   NAJAFABADI A T Emerging applications of graphene and its derivatives in carbon capture and conversion: current status and future prospects[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1515- 1545
doi: 10.1016/j.rser.2014.09.022
[26]   YANG S B, ZHAN L, XU X Y, et al Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture [J]. Advanced Materials, 2013, 25 (15): 2130- 2134
doi: 10.1002/adma.201204427
[27]   VERMA P, KUWAHARA Y, MORI K, et al Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications[J]. Nanoscale, 2020, 12: 11333- 11363
[28]   SANZ R, CALLEJA G, ARENCIBIA A, et al CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15 [J]. Applied Surface Science, 2010, 256 (17): 5323- 5328
doi: 10.1016/j.apsusc.2009.12.070
[29]   SON W J, CHOI J S, AHN W S Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Microporous and Mesoporous Materials, 2008, 113 (1–3): 31- 40
doi: 10.1016/j.micromeso.2007.10.049
[30]   WANG W J, MOTUZAS J, ZHAO X S, et al Enhanced CO2 sorption efficiency in amine-functionalised 2D/3D graphene/silica hybrid sorbents [J]. Chemical Communications, 2018, 54 (75): 10586- 10589
doi: 10.1039/C8CC06373G
[31]   XIONG Z G, ZHANG L L, ZHAO X S Visible-light-induced dye degradation over copper-modified reduced graphene oxide[J]. Chemistry-A European Journal, 2011, 17 (8): 2428- 2434
doi: 10.1002/chem.201002906
[32]   HUMMERS Jr W S, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339
doi: 10.1021/ja01539a017
[33]   ZHAO D, FENG J, HUO Q, et al Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279 (5350): 548- 552
doi: 10.1126/science.279.5350.548
[34]   WHITE L, TRIPP C Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces[J]. Journal of Colloid and Interface Science, 2000, 232 (2): 400- 407
doi: 10.1006/jcis.2000.7224
[35]   LIN L Y, BAI H L Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture [J]. Microporous and Mesoporous Materials, 2010, 136 (1–3): 25- 32
doi: 10.1016/j.micromeso.2010.07.012
[36]   MA X L, WANG X X, SONG C S "Molecular basket" sorbents for separation of CO2 and H2S from various gas streams [J]. Journal of the American Chemical Society, 2009, 131 (16): 5777- 5783
doi: 10.1021/ja8074105
[37]   NIU M Y, YANG H M, ZHANG X C, et al Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture [J]. Acs Applied Materials and Interfaces, 2016, 8 (27): 17312- 17320
doi: 10.1021/acsami.6b05044
[38]   WANG X, GUO Q J, KONG T T Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture [J]. Chemical Engineering Journal, 2015, 273: 472- 480
doi: 10.1016/j.cej.2015.03.098
[39]   LOGANATHAN S, TIKMANI M, EDUBILLI S, et al CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature [J]. Chemical Engineering Journal, 2014, 256: 1- 8
doi: 10.1016/j.cej.2014.06.091
[40]   BALASUBRAMANIAN R, CHOWDHURY S. Recent advances and progress in the development of graphene-based adsorbents for CO2 capture [J]. Journal of Materials Chemistry A, 2015, 3: 21968-21989.
[41]   TANG Z, HAN Z, YANG G, et al Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture [J]. Applied Surface Science, 2013, 277: 47- 52
doi: 10.1016/j.apsusc.2013.03.142
[42]   ASAI M, OHBA T, IWANGAG T, et al Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O [J]. Journal of the American Chemical Society, 2011, 133: 14880- 14883
doi: 10.1021/ja205832z
[43]   ALINEZHAD H, ABARGHOUEI M R F, TAJBAKHSH M, et al Application of MEA, TEPA, and morpholine grafted NaY zeolite as CO2 capture [J]. Iranian Journal of Chemistry and Chemical Engineering-International English Edition, 2021, 40: 581- 592
[44]   BAO Z, ALNEMRAT S, YU L, et al Kinetic separation of carbon dioxide and methane on a copper metal-organic framework[J]. Journal of Colloid and Interface Science, 2011, 357: 504- 509
doi: 10.1016/j.jcis.2011.01.103
[45]   KUWAHARA Y, KANG D Y, COPELAND J R, et al Dramatic enhancement of CO2 uptake by poly (ethyleneimine) using zirconosilicate supports [J]. Journal of the American Chemical Society, 2012, 134: 10757- 10760
doi: 10.1021/ja303136e
[46]   ZHANG T M, ZHANG Y, JIANG H, et al Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity, environmental science and pollution research international [J]. Environmental Science and Pollution Research, 2019, 26 (16): 16716- 16726
doi: 10.1007/s11356-019-05068-3
[47]   ZHAO Y, SHEN Y, BAI L, et al Synthesis and CO2 adsorption properties of molecularly imprinted adsorbents [J]. Environmental Science and Technology, 2012, 46: 1789- 1795
doi: 10.1021/es203580b
[48]   CHEN C, PARK D W, AHN W S Surface modification of a lowcost bentonite for post-combustion CO2 capture [J]. Applied Surface Science, 2013, 283: 699- 704
doi: 10.1016/j.apsusc.2013.07.005
[49]   PRIVALOVA E I, KARJALAINEN E, NURMI M, et al Imidazolium-based poly (ionic liquid)s as new alternatives for CO2 capture [J]. ChemSusChem, 2013, 6: 1500- 1509
doi: 10.1002/cssc.201300120
[50]   WANG D, WANG X, SONG C Comparative study of molecular basket sorbents consisting of polyallylamine and polyethylenimine functionalized SBA-15 for CO2 capture from flue gas [J]. ChemPhysChem, 2017, 18 (22): 1439- 7641
[51]   黄从亮, 冯妍卉, 张欣欣, 等. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究[J]物理学报, 2012, 61(15): 323-330.
HUANG Cong-liang , FENG Yan-hui, ZHANG Xin-xin, et al. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15[J]. Chinese Journal of Physics, 2012, 61(15): 323-330.
[1] Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.
[2] En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.
[3] Xuan HE,Qi-xing ZHOU. Research progress of new petroleum adsorbents based on chitosan aerogels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1368-1380.
[4] Wang-yu REN,Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN. MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1628-1636.
[5] Zhi-qiang WU,Jun WEI,Rong-zhen DONG. Graphene-based piezoresistive composite and application in crack monitoring[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 233-240.
[6] Qing ZHU,Wang-yu REN,Xiao-nan JIANG,Wei-xiang CHEN. Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1306-1314.
[7] LONG Bi-bo, YE Bin-hui, LIU Qing-lin, LUO Ya-ting, SHI Ji-yan. Experiment of application of Penicillium oxalicum SL2 in Cr(VI) removal from high-salinity electroplating wastewater[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1616-1623.
[8] SONG Ying-bin, XU Jin-xia, JIANG Lin-hua, TAN Qi-ping, MEI You-jing. Anti-corrosion performance of NO3-/NO2- intercalation of MgAl-LDHs in simulated concrete pore solution[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2397-2405.
[9] ZHU Ming-ting, ZHANG Qing-song, LI Shu-cai, LI Wei, SUI Hai-tong, YANG Hong-lu. Simulation test for main control factors of soil splitting grouting reinforcement[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2058-2067.
[10] YANG Jin-yao, FANG Meng-xiang, CEN Qi-gang, WANG Tao, HE Hui. Simulation of capturing carbon dioxide from flue gas by activated carbon[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2142-2149.
[11] SONG Wei, JIANG Hong-jian, WANG Tao, GAO Zhen-fei, DU Zhen-tao, ZHU Shi-qiang. Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1837-1844.
[12] CAO Wei-bo, WANG Li-jun, LI Xi. Fabrication of wall-flow honeycomb micro packed bed and application in pressure swing adsorption process[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 777-783.
[13] LI Hai feng, WANG Cheng xi. Adsorption separation process of acetic acid in DMAC aqueous solution[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1725-1729.
[14] HAN Lei, ZHU Pei wang, CHENG Le ming, WANG Qin hui. Experiment on sintering reactions of acid leaching residue from coal ash[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 955-960.
[15] SHAO Wei-yun, YI Wen-tao, ZHOU Yong-chao, ZHANG Ping. Mechanism of lead (Pb2+) adsorption on natural clinoptilolite[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1173-1178.