Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1368-1380    DOI: 10.3785/j.issn.1008-973X.2021.07.016
    
Research progress of new petroleum adsorbents based on chitosan aerogels
Xuan HE(),Qi-xing ZHOU*()
College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
Download: HTML     PDF(1971KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Chitosan aerogel has good biocompatibility, non-toxicity, easy degradation and other excellent properties, which can be used as an ideal green oil adsorbent to effectively solve the major problems of oil leakage and pollution. The researching progress of new petroleum adsorbents based on chitosan aerogel was reviewed. Firstly, the advantages and disadvantages of traditional oil treatment methods and oil absorbents were compared and the superiorities of chitosan aerogels as oil adsorbents were summarized. Then the synthesis and modification methods of chitosan aerogels and their advantage as petroleum adsorbents were analyzed and summarized. Finally, the problems existing in the current research and the future research direction were summarized and prospected.



Key wordspetroleum treatment      petroleum adsorbent      chitosan aerogels      adsorption properties      circular utilization      environment-friendly     
Received: 16 May 2020      Published: 05 July 2021
CLC:  TE 991.2  
Fund:  国家重点研发计划资助项目(2019YFC1804104);NSFC山东联合基金资助项目(U1906222);高等学校学科创新引智计划资助项目(T2017002)
Corresponding Authors: Qi-xing ZHOU     E-mail: hexuanc30@163.com;zhouqx@nankai.edu.cn
Cite this article:

Xuan HE,Qi-xing ZHOU. Research progress of new petroleum adsorbents based on chitosan aerogels. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1368-1380.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.016     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1368


基于壳聚糖气凝胶的新型石油吸附剂研究进展

壳聚糖气凝胶具有生物相容性好、无毒易降解以及其他的优异性能,可作为理想的绿色石油吸附剂有效解决石油泄漏与污染的重大问题. 综述了基于壳聚糖气凝胶的新型石油吸附剂的研究进展. 对比传统石油处理方式及传统吸附剂的优缺点;分析总结壳聚糖气凝胶的合成、改性方法及其作为石油吸附剂的优势;总结目前研究中存在的问题,展望未来的研究方向.


关键词: 石油处理,  石油吸附剂,  壳聚糖气凝胶,  吸附性能,  循环利用,  环境友好 
Fig.1 Traditional petroleum collection device based on adsorption method
吸附剂 改性剂 水接触角/(°) 对有机试剂和油品吸附能力/(g·g?1 循环使用次数
镍泡沫[2, 10] 正十二硫醇 155 3.5 10
rGO涂层布[11] rGO 141 5~15
空心磁核Fe3O4纳米粒子[12] 聚苯乙烯 153±3 1.36~1.44 6
Fe/Cu粒子[13] 十二烷基硫醇 160 0.2~0.5 7
PS-g-CNTs[14] 152 10~270 10
聚氨酯海绵[15] SiO2溶胶+汽油 126 95~108 8
Fe3O4/HDPE/PU海绵[16] HDPE/磁性(Fe3O4)颗粒 155 15~52 10
MF海绵[17] 1H、1H、2H、2H?全氟癸硫醇 163.4 79~195 100
PDMS海绵[18] 151.5 4.72~20.00 10
PVF-H海绵[19] 硬质酰氯 138 13.7~56.6 35
甲壳素海绵[20] 甲基三氯硅烷 29~58 10
FGO@MOG[21] 126 2~5 5
PDMS-Fe3O4@MF[22] PDMS 170 95.6~161.3 30
3D-PU-G[23] 漆酚 136 38.5~88.8 100
多孔PDMS海绵[24] 柠檬酸一水合物 137.5 7~14.99 25
纳米纤维素气凝胶[25] 甲基三甲氧基硅烷 136 49~102 10
木海绵[26] 甲基三甲氧基硅烷 151 16~41 10
细菌纤维素气凝胶[27] 三甲基氯硅烷 146.5 86~185 10
多孔纳米纤维素气凝胶[28] TiO2 >90 20~40 20
木/环氧生物复合材料[29] 双酚a二缩水甘油醚/聚醚胺 140 6~20
涤纶织物[30] 甲基三氯硅烷 2.92 9
三聚氰胺海绵[31] 聚二甲基硅氧烷 >150 45~75 20
磁性聚氨酯海绵[32] 十七氟?1,1,2,2?四氢癸基三甲氧基硅烷(FAS-17) 153.7 10~35 10
UFC泡沫[33] 三甲基氯硅烷 145.4 71~158 5
PDMS海绵[34] >(120~130) 4~11 20
空心碳球[35] 碳纳米管 152 10
三聚氰胺海绵[36] 石墨烯/炭黑 167 50~130 10
三聚氰胺海绵[36] 聚偏氟乙烯 155 60~160 10
Tab.1 Performance comparison of traditional absorbents
Fig.2 Oil absorption mechanisms of traditional adsorbents conducive to oil product recovery
Fig.3 Crosslinking mechanisms between chitosan and crosslinking agents
Fig.4 Hydrophobic modification of chitosan aerogel
Fig.5 Surface wettability of modified chitosan aerogels
吸附剂 交联剂 改性剂/方法 对有机试剂和油品吸附能力/(g·g?1 循环使用次数
超疏水纤维素/
壳聚糖复合气凝胶(SCECS)[67]
硬脂酸钠/浸泡 7~10 5
CsA[42] 戊二醛 氨水/浸泡 13.11~32.39 9
AGGO[43] 戊二醛 5.22~12.56
SCECS气凝胶[68] 纤维素 硬脂酸钠/浸泡 7~10 5
fCGA[69] 戊二醛 全氟癸硫醇/浸泡 12~21 11
MCTCS海绵[45] TPP+柠檬醛 正十八烷基硫醇/浸泡 23~60 15
CS/NFC气凝胶[56] 纳米纤化纤维素 NaOH溶液/浸泡 40
T-CS-OCA[63] 三甲基氯硅烷/等离子体处理 13.77~28.20 50
NCS-g-poly[60] 壬醛 丙烯酸丁酯 108.79
rGO/CS- Si气凝胶[59] PDMS+H-SiO2 18.7~45.3 13
改性CS气凝胶[70] MTMS/气相沉积 31~63 10
壳聚糖?二氧化硅复合气凝胶[64] 六甲基二硅氮烷/浸泡+气相沉积 14.3~30 10
壳聚糖气凝胶[40] 戊二醛 三甲基氯硅烷/等离子体处理 13.11~32.39 6
MCTCS海绵[40] TPP+柠檬醛 十六烷基硫醇 25~58 20
Tab.2 Performance comparison of chitosan-based aerogel adsorbents
Fig.6 Modification of mechanical properties of chitosan aerogels
[1]   李言涛 海上溢油的处理与回收[J]. 海洋湖沼通报, 1996, (1): 73- 83
LI Yan-tao Treatment and recovery of oil spill at sea[J]. Transactions of Oceanology and Limnology, 1996, (1): 73- 83
[2]   CHENG M J, GAO Y F, GUO X P, et al A functionally integrated device for effective and facile oil spill cleanup[J]. Langmuir, 2011, 27 (12): 7371- 7375
doi: 10.1021/la201168j
[3]   周启星, 宋玉芳. 污染土壤修复原理与方法. 北京: 科学出版社, 2004.
[4]   SONG J L, HUANG S, LU Y, et al Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh[J]. ACS Applied Materials and Interfaces, 2014, 6 (22): 19858- 19865
doi: 10.1021/am505254j
[5]   BASTANI D, SAFEKORDI A A, ALIHOSSEINI A, et al Study of oil sorption by expanded perlite at 298.15 K[J]. Separation and Purification Technology, 2006, 52 (2): 295- 300
doi: 10.1016/j.seppur.2006.05.004
[6]   CHEN P Y, SODHI J, QIU Y, et al Multiscale graphene topographies programmed by sequential mechanical deformation[J]. Advanced Materials, 2016, 28 (18): 3564- 3571
doi: 10.1002/adma.201506194
[7]   NIU Z, CHEN J, HNG H H, et al A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials, 2012, 24 (30): 4144- 4150
doi: 10.1002/adma.201200197
[8]   ZHU H G, CHEN D Y, LI N J, et al Graphene foam with switchable oil wettability for oil and organic solvents recovery[J]. Advanced Functional Materials, 2015, 25 (4): 597- 605
doi: 10.1002/adfm.201403864
[9]   CHU Y, PAN Q Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials[J]. ACS Applied Materials and Interfaces, 2012, 4 (5): 2420- 2425
doi: 10.1021/am3000825
[10]   CHENG M J, JU G N, JIANG C, et al Magnetically directed clean-up of underwater oil spills through a functionally integrated device[J]. Journal of Materials Chemistry A, 2013, 1 (43): 13411
doi: 10.1039/c3ta12607b
[11]   UPADHYAY R K, DUBEY A, WAGHMARE P R, et al Multifunctional reduced graphene oxide coated cloths for oil/water separation and antibacterial application[J]. RSC Advances, 2016, 6 (67): 62760- 62767
doi: 10.1039/C6RA08079K
[12]   CHEN M D, JIANG W, WANG F H, et al Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface[J]. Applied Surface Science, 2013, 286: 249- 256
doi: 10.1016/j.apsusc.2013.09.059
[13]   DUAN C, ZHU T, GUO J, et al Smart enrichment and facile separation of oil from emulsions and mixtures by superhydrophobic/superoleophilic particles[J]. ACS Applied Materials and Interfaces, 2015, 7 (19): 10475- 10481
doi: 10.1021/acsami.5b01901
[14]   GU J C, XIAO P, CHEN J, et al Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2014, 2 (37): 15268
doi: 10.1039/C4TA01603C
[15]   WU D X, FANG L L, QIN Y M, et al Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup[J]. Marine Pollution Bulletin, 2014, 84 (1-2): 263- 267
doi: 10.1016/j.marpolbul.2014.05.005
[16]   YU T L, HALOUANE F, MATHIAS D, et al Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: Separation of oil/water mixture and demulsification[J]. Chemical Engineering Journal, 2020, 384: 123339
doi: 10.1016/j.cej.2019.123339
[17]   RUAN C, AI K, LI X, et al A superhydrophobic sponge with excellent absorbency and flame retardancy[J]. Angewandte Chemie International Edition, 2014, 53 (22): 5556- 5560
doi: 10.1002/anie.201400775
[18]   ZHAO X, LI L X, LI B C, et al Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages[J]. Journal of Materials Chemistry A, 2014, 2 (43): 18281- 18287
doi: 10.1039/C4TA04406A
[19]   PAN Y X, SHI K, PENG C, et al Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill[J]. ACS Applied Materials and Interfaces, 2014, 6 (11): 8651- 8659
doi: 10.1021/am5014634
[20]   DUAN B, GAO H, HE M, et al Hydrophobic modification on surface of chitin sponges for highly effective separation of oil[J]. ACS Applied Materials and Interfaces, 2014, 6 (22): 19933- 19942
doi: 10.1021/am505414y
[21]   JAYARAMULU K, GEYER F, PETR M, et al Shape controlled hierarchical porous hydrophobic/oleophilic metal-organic nanofibrous gel composites for oil adsorption[J]. Advanced Materials, 2017, 29 (12): 1605307
doi: 10.1002/adma.201605307
[22]   LIU Y Y, WANG X, FENG S Y Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials, 2019, 29 (29): 1902488
doi: 10.1002/adfm.201902488
[23]   ZHENG X L, XIONG X, YANG J W, et al A strong and compressible three dimensional graphene/polyurushiol composite for efficient water cleanup[J]. Chemical Engineering Journal, 2018, 333: 153- 161
doi: 10.1016/j.cej.2017.09.146
[24]   YU C L, YU C M, CUI L Y, et al Facile preparation of the porous PDMS oil-absorbent for oil/water separation[J]. Advanced Materials Interfaces, 2016, 4 (3): 1600862
[25]   ZHANG Z, SÈBE G, RENTSCH D, et al Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water[J]. Chemistry of Materials, 2014, 26 (8): 2659- 2668
doi: 10.1021/cm5004164
[26]   GUAN H, CHENG Z, WANG X Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano, 2018, 12 (10): 10365- 10373
doi: 10.1021/acsnano.8b05763
[27]   SAI H, FU R, XING L, et al Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation[J]. ACS Applied Materials and Interfaces, 2015, 7 (13): 7373- 7381
doi: 10.1021/acsami.5b00846
[28]   KORHONEN J T, KETTUNEN M, RAS R H A, et al Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents[J]. ACS Applied Materials and Interfaces, 2011, 3 (6): 1813- 1816
doi: 10.1021/am200475b
[29]   FU Q, ANSARI F, ZHOU Q, et al Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures[J]. ACS Nano, 2018, 12 (3): 2222- 2230
doi: 10.1021/acsnano.8b00005
[30]   ZHANG J, SEEGER S Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption[J]. Advanced Functional Materials, 2011, 21 (24): 4699- 4704
doi: 10.1002/adfm.201101090
[31]   CHEN X M, WEIBEL J A, GARIMELLA S V Continuous oil-water separation using polydimethylsiloxane-functionalized melamine sponge[J]. Industrial and Engineering Chemistry Research, 2016, 55 (12): 3596- 3602
doi: 10.1021/acs.iecr.6b00234
[32]   LIU S H, XU Q F, LATTHE S S, et al Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation[J]. Rsc Advances, 2015, 5 (84): 68293- 68298
doi: 10.1039/C5RA12301A
[33]   YANG Y, DENG Y H, TONG Z, et al Multifunctional foams derived from poly (melamine formaldehyde) as recyclable oil absorbents[J]. Journal of Materials Chemistry A, 2014, 2 (26): 9994
doi: 10.1039/C4TA00939H
[34]   CHOI S J, KWON T H, IM H, et al A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water[J]. ACS Applied Materials and Interfaces, 2011, 3 (12): 4552- 4556
doi: 10.1021/am201352w
[35]   ZHOU J G, SUN Z L, CHEN M Q, et al Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties[J]. Advanced Functional Materials, 2016, 26 (29): 5368- 5375
doi: 10.1002/adfm.201600564
[36]   JI C H, ZHANG K, LI L, et al High performance graphene-based foam fabricated by a facile approach for oil absorption[J]. Journal of Materials Chemistry A, 2017, 5 (22): 11263- 11270
doi: 10.1039/C7TA02613G
[37]   CEYLAN D, DOGU S, KARACIK B, et al Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater[J]. Environmental Science and Technology, 2009, 43 (10): 3846- 3852
doi: 10.1021/es900166v
[38]   蓝舟琳. 玉米秸秆的生物改性及其对石油吸附性能的研究[D]. 广州: 华南理工大学, 2013.
LAN Zhou-lin. The biological modification and adsorption property for oil spill of corn stalk[D]. Guangzhou: South China University of Technology, 2013.
[39]   朱米家, 刘瑞平, 武笑影, 等 改性核桃壳对石油烃类物质的吸附试验研究[J]. 环境工程, 2015, 33 (6): 54- 58
ZHU Mi-jia, LIU Rui-ping, WU Xiao-ying. et al et al. Adsorption of petroleum hydrocarbon by modified walnut shell[J]. Environmental Engineering, 2015, 33 (6): 54- 58
[40]   李昂. 壳聚糖基气凝胶的制备、改性及性能研究[D]. 海口: 海南大学, 2016.
LI Ang. Preparation, modification and properties research on chitosan-sased aerogel[D]. Haikou: Hainan University, 2016.
[41]   LIU J, LI P, CHEN L, et al Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation[J]. Surface and Coatings Technology, 2016, 307: 171- 176
doi: 10.1016/j.surfcoat.2016.08.052
[42]   LI A, LIN R, LIN C, et al An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion[J]. Carbohydrate Polymers, 2016, 148: 272- 280
doi: 10.1016/j.carbpol.2016.04.070
[43]   GUO X, QU L, ZHU S, et al Preparation of three-dimensional chitosan-graphene oxide aerogel for residue oil removal[J]. Water Environment Research, 2016, 88 (8): 768- 778
[44]   OUYANG J B, WANG Y, LI T Q, et al Immobilization of carboxyl-modified multiwalled carbon nanotubes in chitosan-based composite membranes for U(VI) sorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317 (3): 1419- 1428
doi: 10.1007/s10967-018-5993-z
[45]   SU C P, YANG H, ZHAO H P, et al Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water[J]. Chemical Engineering Journal, 2017, 330: 423- 432
doi: 10.1016/j.cej.2017.07.157
[46]   LI Z, SHAO L, RUAN Z, et al Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions[J]. Carbohydrate Polymers, 2018, 193: 221- 227
doi: 10.1016/j.carbpol.2018.04.003
[47]   KILDEEVA N R, PERMINOV P A, VLADIMIROV L V, et al About mechanism of chitosan cross-linking with glutaraldehyde[J]. Russian Journal of Bioorganic Chemistry, 2009, 35 (3): 360- 369
doi: 10.1134/S106816200903011X
[48]   POON L, WILSON L D, HEADLEY J V Chitosan-glutaraldehyde copolymers and their sorption properties[J]. Carbohydrate Polymers, 2014, 109: 92- 101
doi: 10.1016/j.carbpol.2014.02.086
[49]   吴国友 常压干燥制备二氧化硅气凝胶[J]. 化学进展, 2010, 22 (10): 1892- 1900
Wu Guo-you Preparation of silica aerogels via ambient pressure drying[J]. Progress in Chemistry, 2010, 22 (10): 1892- 1900
[50]   BALDINO L, CARDEA S, REVERCHON E Nanostructured chitosan-gelatin hybrid aerogels produced by supercritical gel drying[J]. Polymer Engineering and Science, 2018, 58 (9): 1494- 1499
doi: 10.1002/pen.24719
[51]   BALDINO L, CONCILIO S, CARDEA S, et al Interpenetration of natural polymer aerogels by supercritical drying[J]. Polymers, 2016, 8 (4): 106
doi: 10.3390/polym8040106
[52]   DELLA PORTA G, DEL GAUDIO P, DE CICCO F, et al Supercritical drying of alginate beads for the development of aerogel biomaterials: optimization of process parameters and exchange solvents[J]. Industrial and Engineering Chemistry Research, 2013, 52 (34): 12003- 12009
doi: 10.1021/ie401335c
[53]   王宝和, 李群 气凝胶制备的干燥技术[J]. 干燥技术与设备, 2013, 11 (4): 18- 26
WANG Bao-he, LI Qun Drying technology for preparation of aerogels[J]. Drying Technology and Equipment, 2013, 11 (4): 18- 26
[54]   HE F, ZHAO H, QU X, et al Modified aging process for silica aerogel[J]. Journal of Materials Processing Technology, 2009, 209 (3): 1621- 1626
doi: 10.1016/j.jmatprotec.2008.04.009
[55]   SCHWERTFEGER F, FRANK D, SCHMIDT M Hydrophobic waterglass based aerogels without solvent exchangeor supercritical drying[J]. Journal of Non-Crystalline Solids, 1998, 225: 24- 29
doi: 10.1016/S0022-3093(98)00102-1
[56]   ZHANG H, LI Y, SHI R, et al A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation[J]. Carbohydrate Polymers, 2018, 200: 611- 615
doi: 10.1016/j.carbpol.2018.07.071
[57]   LI Y Q, ZHANG H, FAN M Z, et al A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments[J]. Physical Chemistry Chemical Physics, 2016, 18 (36): 25394- 25400
doi: 10.1039/C6CP04284H
[58]   CAO Y, ZHANG X, TAO L, et al Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation[J]. ACS Applied Materials and Interfaces, 2013, 5 (10): 4438- 4442
doi: 10.1021/am4008598
[59]   HU J, ZHU J D, GE S Z, et al Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation[J]. Surface and Coatings Technology, 2020, 385: 125361
doi: 10.1016/j.surfcoat.2020.125361
[60]   OMER A M, KHALIFA R E, TAMER T M, et al Fabrication of a novel low-cost superoleophilic nonanyl chitosan-poly (butyl acrylate) grafted copolymer for the adsorptive removal of crude oil spills[J]. International Journal of Biological Macromolecules, 2019, 140: 588- 599
doi: 10.1016/j.ijbiomac.2019.08.169
[61]   MUTEL B, BIGAN M, VEZIN H Remote nitrogen plasma treatment of a polyethylene powder: optimisation of the process by composite experimental designs[J]. Applied Surface Science, 2004, 239 (1): 25- 35
[62]   KWON O J, MYUNG S W, LEE C S, et al. Comparison of the surface characteristics of polypropylene films treated by ar and mixed gas (Ar/O2) atmospheric pressure plasma[J]. Journal of Colloid and Interface Science, 295(2): 409-416.
[63]   LI Z Y, SHAO L, HU W B, et al Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent[J]. Carbohydrate Polymers, 2018, 191: 183- 190
doi: 10.1016/j.carbpol.2018.03.027
[64]   MA Q, LIU Y F, DONG Z, et al Hydrophobic and nanoporous chitosan-silica composite aerogels for oil absorption[J]. Journal of Applied Polymer Science, 2015, 132 (15): 41770
[65]   POJANAVARAPHAN T, MAGARAPHAN R Prevulcanized natural rubber latex/clay aerogel nanocomposites[J]. European Polymer Journal, 2008, 44 (7): 1968- 1977
doi: 10.1016/j.eurpolymj.2008.04.039
[66]   SALAM A, VENDITTI R A, PAWLAK J J, et al Crosslinked hemicellulose citrate-chitosan aerogel foams[J]. Carbohydrate Polymers, 2011, 84 (4): 1221- 1229
doi: 10.1016/j.carbpol.2011.01.008
[67]   PENG H L, WU J N, WANG Y X, et al A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation[J]. Applied Physics A, 2016, 122
doi: 10.1007/s00339-016-0049-0
[68]   MENG G H, PENG H L, WU J N, et al Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation[J]. Fibers and Polymers, 2017, 18 (4): 706- 712
doi: 10.1007/s12221-017-1099-4
[69]   CAO N, LYU Q, LI J, et al Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation[J]. Chemical Engineering Journal, 2017, 326: 17- 28
doi: 10.1016/j.cej.2017.05.117
[70]   YI L, YANG J, FANG X, et al Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water[J]. Journal of Hazardous Materials, 2020, 385: 121507
doi: 10.1016/j.jhazmat.2019.121507
[71]   KUANG Y, CHEN C, CHEN G, et al Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil[J]. Advanced Functional Materials, 2019, 29 (16): 1900162
doi: 10.1002/adfm.201900162
[72]   KULAWARDANA E U, NECKERS D C Photoresponsive oil sorbers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48 (1): 55- 62
doi: 10.1002/pola.23753
[73]   WU J D, JIANG Y L, JIANG D J, et al The fabrication of ph-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation[J]. Materials Letters, 2015, 160: 384- 387
doi: 10.1016/j.matlet.2015.07.146
[1] ZHONG Xiao-le, ZHAN Liang-tong, GONG Biao, ZENG Xing, CHEN Yun-min. Consolidation permeability and adsorption properties of three kinds of typical kaolin clays in China[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1947-1954.