Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Consolidation permeability and adsorption properties of three kinds of typical kaolin clays in China
ZHONG Xiao-le, ZHAN Liang-tong, GONG Biao, ZENG Xing, CHEN Yun-min
Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1384KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigatethe-physical, chemical and mechanical properties of different kinds of kaolin clay in China,  consolidation, permeability and isothermal adsorption tests were  carried out on hard, soft and sandy  kaolin clays. The experimental results show that the saturated permeability of the hard and soft kaolin clays can be decreased to 1×10-7 cm/s by consolidating a slurry sample, while the coefficients of permeability and consolidation for the sandy kaolin clay are both one order of magnitude greater than that of hard and soft kaolir clays. The adsorption capacity of Pb2+ and Cd2+ are  different for the three kinds of kaolin clay. The order in the adsorption capacity  is as follows: hard > soft > sandy kaolin clay. The adsorption capacity of Pb2+ is significantly higher than that of Cd2+ for all of the three kinds of kaolin clays. The values of adsorption capacity for Pb2+(Q0) in terms of the Langmuir isotherm for the hard, soft and sandy kaolin clay are measured as 6 347.2 mg/kg, 3 105.5 mg/kg and 2 672.7 mg/kg, respectively, and the corresponding values for Cd2+ are measured as 691.1 mg/kg, 686.4 mg/kg and 667.5 mg/kg,respe ctively. Considering the difference in the physical, permeability and adsorption properties, as well as the ease of sample preparation, it is recommended to use the soft kaolin clay as an experimental material for the model preparation of an compacted clay liners.



Published: 01 November 2014
CLC:  TU 411  
Cite this article:

ZHONG Xiao-le, ZHAN Liang-tong, GONG Biao, ZENG Xing, CHEN Yun-min. Consolidation permeability and adsorption properties of three kinds of typical kaolin clays in China. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1947-1954.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.11.006     OR     http://www.zjujournals.com/eng/Y2014/V48/I11/1947


我国3种典型高岭土的固结、渗透及吸附特性

为了研究不同类型高岭土的物理、化学及土力学特性,通过压缩固结、渗透及等温吸附试验,确定国内硬质、软质和砂质3种典型高岭土的固结、渗透及吸附特性.试验结果表明:通过压缩固结,硬质、软质高岭土的饱和渗透系数可减小到1×10-7 cm/s,砂质高岭土的渗透、固结系数均比前两者高一个数量级.不同类型的高岭土吸附Pb2+、Cd2+的能力不同,吸附能力由高到低排序为硬质高岭土>软质高岭土>砂质高岭土.3种高岭土对Pb2+的吸附能力均显著高于对Cd2+的吸附,硬质、软质、砂质高岭土对Pb2+的吸附容量分别为6 347.2、3 105.5、2 672.7 mg/kg,对Cd2+的吸附容量分别为691.1、686.4、667.5 mg/kg.综合考虑这3类高岭土的物理、渗透和吸附特性以及制样的方便性,推荐采用软质高岭土作为压实黏土衬垫的实验模拟材料.

[1] 卢党军. 我国砂质高岭土资源特点与开发利用现状[J]. 非金属矿, 2009, 32(3): 52-52.
LU Dang-jun. Resource characteristics of arenaceous kaolin in china and its current situation of exploitation and utilization [J]. Non-metallic Mine, 2009, 32(3).: 52-52.
[2] 吴铁轮. 我国高岭土行业现状及发展前景[J]. 非金属矿, 2000, 23(2): 57.
WU Tie-lun. Prensent situation and developing prospect of kaolin trade in china [J]. Non-metallic Mine, 2000, 23(2): 57.
[3] 唐靖炎, 张韬. 中国煤系高岭土加工利用现状与发展[J]. 新材料产业, 2009, 3: 60-63.
TANG Jing-yan, ZHANG Tao. The situation of processing and application of calcined coal measures kaolinite and its develop ment in China [J]. Advanced Materials Industry, 2009, 22(3): 60-63.
[4] 亓春英, 刘星, 周跃飞. 高岭土的综合利用与发展前景[J]. 昆明理工大学学报 :理工版, 2003, 28(2):12.
QI Chun-ying, LIU Xing, ZHOU Yue-fei. Kaolins Comprehensive utilization and developing prospect [J]. Journal of Kunming University of Science and Techology:Science and Techology, 2003, 28(2):12.
[5] COLES C A, YONG R N. Aspects of kaolinite characterization and retention of Pb and Cd [J]. Applied Clay Science, 2002, 22(1): 39-45.
[6] TANG Qiang, TANG Xiao-wu, LI Zhen-ze, et a1.Adsorption and desorption behaviors of Pb(II)on a natural Kaolin:Equilibrium,kinetic and thermodynamic studies [J].Journal of Chemical Technology and Biotechnology,2009,84(9):13711380, SEP 2009.
[7] SHACKELFORD C, DANIEL D. Diffusion in saturated soil. ii: results for compacted clay [J]. Journal of Geotechmical Engineering, ASCE, 1991, 117(3), 485-506.
[8] 李振泽. 土对重金属离子的吸附解吸特性及其迁移修复机制研究[D]. 杭州:浙江大学, 2009:107-129.
LI Zhen-ze.Adsorption and desorption behaviors of heavy metals on soils and the research of their migration- remediation mechanism [D].Hangzhou:Zhejiang University,2009:107-129.
[9] MCKINLEY J D. Centrifuge modelling of the transport of a pulse of two contaminants through a clay layer\[J\]. Geotechnique, 1998. 48(3):421-425.
[10] 国家建筑材料工业局地质公司.中国高岭土矿床地质学[M].上海:上海科学技术文献出版社,1984:39-74.
[11] GB/T 50123-1999. 土工试验方法标准[S]. 北京: 中国计划出版社,1999.
GB/T 50123-1999. Standard for soil test method [S].Beijing: China Planning Press, 1999.
[12] DU Yan-jun, HAYASHI S, HINO T, et a1. Contaminant adsorption characteristics of Kyushu regional soils [J]. Lowland Technology International, 2000, 2(2): 31-41.
[13] HANSEN A M, MAYA P. Adsorption-desorption behavious of Pb and Cd in Lake Chapala, Mexico [J].Environment International , 1997, 23(4): 554-564.
[14] 吴宏海, 刘佩红, 张秋云,等. 高岭石对重金属离子的吸附机理及其溶液的 pH 条件[J]. 高校地质学报, 2005, 11(1): 85-91.
WU Hong-hai, LIU Pei-hong, ZHANG Qiu-yun, et a1.Mechanisms of adsorption of heavy metal ions on kaolinite and their solution as a function of Ph[J]. Geological Journal Of China Universities, 2005, 11(1): 85-91.
[15] HIZAL J, APAK R.  Modeling of cadmium(II) adsorption on kaolinite-based clays in the absence and presence of humic acid [J]. Applied Clay Science,2006,32: 232-244.
[16] DO D D. Adsorption analysis: Equilibrium and kinetics[M].London: Imperial College Press,1998:166-173.
[17] ADEBOWALE K O. The effect of some operating variables on the adsorpsion of lead and cadmium ions on kaolinite clay [J]. Journal of Hazardous Materials, 2006,134(1):130-139.
[18] SRIVASTAVA P, SINGH B, ANGOVE M. Competitive adsorption behavior of heavy metals on kaolinite\[J\]. Journal of Colloid and Interface Science, 2005, 290(1): 28-38.
[19] JIANG Qin-ming, JIN Xiao-ying, LU Xiao-qiao, et al. Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay [J]. Desalination, 2010, 252(1): 33-39.
[20] UNUABONAH E I, ADEBOWALE K O, OLU-OWOLABI B I, et al. Comparison of sorption of Pb 2+ and Cd 2+ on Kaolinite clay and polyvinyl alcohol-modified Kaolinite clay [J]. Adsorption, 2008, 14(6): 791-803.
[21] SHAHMOHASADI-KALALAHG S, BABAZADEH H, NAZEMI A H, et al. Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite [J]. Caspian Journal of Environmental Management, 2011, 9(2): 243-255.
[22] WANG Sheng-li, NAN Zhong-ren, CAO Xin-de, et al. Sorption and desorption behavior of lead on a Chinese kaolin[J]. Environmental Earth Sciences, 2011, 63(1): 145-149.

[1] JIAO Wei guo, ZHAN Liang tong, LAN Ji wu, CHEN Yun min. Analysis of capillary barrier effect and design thickness with loess-gravel cover[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2128-2134.
[2] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1849-1854.
[3] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 813-821.
[4] ZHANG Ru ru, ZHAO Yun, XU Wen jie,HUANG Bo,LING Dao sheng,HAN Li ming. Water gas migration analysis in runway subgrade soil under influence of temperature[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 822-830.
[5] ZENG Xing, ZHAN Liang tong, ZHONG xiao le, CHEN Yun min. Similarity of centrifuge modeling of chloride dispersion in low permeability clay[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 241-249.
[6] ZHENG Jian,LI Yu chao,CHEN Yun min. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 8-15.
[7] LING Dao sheng, SHI Ji sen, ZHANG Ru ru, WANG Yun gang. Discontinuous patch tests in Hansbo and Hansbo’s type of methods[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2142-2150.
[8] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1417-1425.
[9] LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1389-1394.
[10] LI Xin-liang,LI Su-zhen,SHEN Yong-gang. Stress analysis and field testing of buried pipeline under traffic load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1976-1982.
[11] XU Ri-qing, CHANG Shuai, YU Yuan-hong, LU Jian-yang. Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1941-1946.
[12] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1345-1352.
[13] TU Zhi-bin, HUANG Ming-feng, LOU Wen-juan. Dynamic wind load combination of tall buildings based on Copula functions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1370-1375.
[14] LI Xue-gang, XU Ri-qing, CHANG Shuai, LIAO Bin, WANG Xing-chen. Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 843-849.
[15] LIU Chang-dian, SUN Hong-yue, KANG Jian-wei, Du Li-li. Experimental investigation of seepage barrier effect by air-inflation in soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 236-241.