Bi2S3-MoS2/graphene hybrids was synthesized via a hydrothermal method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) in order to develop high-performance anode materials for lithium ion battery. The effects of microstructure of hybrids on their electrochemical lithium storage properties were analyzed. Especially, the Bi2S3-MoS2/graphene with Bi to Mo of 1∶4 in molar ratio deliver a reversible specific capacity as high as 1 140 mA·h/g with stable cyclic performance. At the current density of 1 000 mA/g, its high-rate capability is 886 mA·h/g. The excellent electrochemical performance can be contributed to that MoS2nanosheets exhibited few-layer structure with more edges and Bi2S3 nanoparticles displayed more uniform sizes. The nanostructured MoS2 and Bi2S3 were well dispersed on graphene surface. The lithium ion accommodation was enhanced, and the electrode kinetics of lithium storage was improved.
Qing ZHU,Wang-yu REN,Xiao-nan JIANG,Wei-xiang CHEN. Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1306-1314.
Fig.1X-ray diffraction patterns of different samples
Fig.2Scanning electron microscope images of different samples
Fig.3TEM images of samples at different magnification and elemental mapping of Bi2S3-MoS2/G-2
Fig.4XPS of Bi2S3-MoS2/G-2 hybrid material
Fig.5TG curves of different samples
Fig.6Cyclic voltammograms for first three cycles of different electrodes at scan rate with 0.5 mV/s
Fig.7Charge and discharge curves for first three cycles of different electrodes at 100 mA/g
Fig.8Cycling performances and rate capabilities for different electrodes and cycling performance of Bi2S3-MoS2/G-2 at 1 000 mA/g
Fig.9Electrochemical impedance spectroscopy (EIS) of different electrodes and its equivalent circuit model, in which CPE is constant phase element
电极
Re/Ω
Rf/Ω
Rct/Ω
MoS2/G
9.57
16.66
28.26
Bi2S3-MoS2/G-1
8.35
16.54
24.21
Bi2S3-MoS2/G-2
8.21
11.87
12.73
Bi2S3-MoS2/G-3
8.55
13.78
27.57
Bi2S3/G
8.84
29.71
79.67
Tab.1Kinetic parameters obtained by fitting EIS response
[1]
TENG Y Q, ZHAO H L, ZHANG Z J, et al MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes [J]. ACS Nano, 2016, 10 (9): 8526- 8535
doi: 10.1021/acsnano.6b03683
[2]
SUN P L, ZHANG W X, HU X L, et al Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014, 2 (10): 3498- 3504
doi: 10.1039/C3TA13994H
[3]
LIU S N, CAI Z Y, ZHOU J, et al Chrysanthemum-like Bi2S3 nanostructures: a promising anode material for lithium-ion batteries and sodium-ion batteries [J]. Journal of Alloys and Compounds, 2017, 715: 432- 437
doi: 10.1016/j.jallcom.2017.05.008
[4]
KIM T J, KIRN C, SON D, et al Novel SnS2-nanosheet anodes for lithium-ion batteries [J]. Journal of Power Sources, 2007, 167 (2): 529- 535
doi: 10.1016/j.jpowsour.2007.02.040
[5]
WANG Z, CHEN T, CHEN W X, et al CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries [J]. Journal of Materials Chemistry A, 2013, 1 (6): 2202- 2210
doi: 10.1039/C2TA00598K
[6]
ZHOU J W, QIN J, ZHANG X, et al 2D space-confined synthesis of few-Layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode [J]. ACS Nano, 2015, 9 (4): 3837- 3848
doi: 10.1021/nn506850e
[7]
DU G D, GUO Z P, WANG S Q, et al Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communications, 2010, 46 (7): 1106- 1108
doi: 10.1039/B920277C
[8]
XIAO J, CHOI D W, COSIMBESCU L, et al Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries [J]. Chemistry of Materials, 2010, 22 (16): 4522- 4524
doi: 10.1021/cm101254j
[9]
CHEN B, MENG Y H, HE F, et al Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries [J]. Nano Energy, 2017, 41: 154- 163
doi: 10.1016/j.nanoen.2017.09.027
[10]
LIANG H C, NI J F, LI L Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage [J]. Nano Energy, 2017, 33: 213- 220
doi: 10.1016/j.nanoen.2017.01.033
[11]
CHANG K, CHEN W X L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries [J]. ACS Nano, 2011, 5 (6): 4720- 4728
doi: 10.1021/nn200659w
[12]
WANG Y, XING G Z, HAN Z J, et al Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable Lithium ion batteries [J]. Nanoscale, 2014, 6 (15): 8884- 8890
doi: 10.1039/C4NR01553C
[13]
肖丙刚, 谢治毅, 孙润亮 基于石墨烯的隔离器理论设计与分析[J]. 浙江大学学报: 工学版, 2015, 49 (1): 42- 47 XIAO Bing-gang, XIE Zhi-yi, SUN Run-liang Theoretical design and analysis of isolator based on graphene[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (1): 42- 47
[14]
HUMMMERS W S, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339
doi: 10.1021/ja01539a017
[15]
HUANG G C, CHEN T, CHEN W X, et al Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium [J]. Small, 2013, 9 (21): 3693- 3703
doi: 10.1002/smll.201300415
[16]
XU S R, ZHU Q, CHEN T, et al Hydrothermal synthesis of co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances [J]. Materials Chemistry and Physics, 2018, 219: 399- 410
doi: 10.1016/j.matchemphys.2018.08.048
[17]
WANG S G, LI X, CHEN Y, et al A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy [J]. Advanced Materials, 2015, 27 (17): 2775- 2782
doi: 10.1002/adma.v27.17
[18]
REN J, REN R P, LV Y K A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery [J]. Chemical Engineering Journal, 2018, 353: 419- 424
doi: 10.1016/j.cej.2018.07.139
[19]
SUN W P, RUI X H, ZHANG D, et al Bismuth sulfide: a high-capacity anode for sodium-ion batteries[J]. Journal of Power Sources, 2016, 309: 135- 140
doi: 10.1016/j.jpowsour.2016.01.092
[20]
ZUO X X, CHANG K, ZHAO J, et al Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material [J]. Journal of Materials Chemistry A, 2016, 4 (1): 51- 58
doi: 10.1039/C5TA06869J
[21]
YU Z T, YE J B, CHEN W X, et al Fabrication of few-layer molybdenum disulfide/reduced graphene oxide hybrids with enhanced lithium storage performance through a supramolecule-mediated hydrothermal route[J]. Carbon, 2017, 114: 125- 133
doi: 10.1016/j.carbon.2016.12.002
[22]
ZHAO Y, GAO D L, NI J F, et al One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability [J]. Nano Research, 2014, 7 (5): 765- 773
doi: 10.1007/s12274-014-0437-8