Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 233-240    DOI: 10.3785/j.issn.1008-973X.2020.02.003
Civil and Transportation Engineering     
Graphene-based piezoresistive composite and application in crack monitoring
Zhi-qiang WU(),Jun WEI*(),Rong-zhen DONG
School of Civil Engineering, Central South University, Changsha 410075, China
Download: HTML     PDF(1392KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to remedy the deficiency of existing flexible strain sensors in health monitoring, an elastic composite material with piezoresistive effect was prepared by the solution blending and solvent evaporation method, with reduced graphene oxide (rGO) as conductive filler, cellulose nanofiber (CNF) as dispersant and structural skeleton, and polydimethylsiloxane (PDMS) as elastic matrix. The microstructure, mechanical properties, electrical conductivity and electromechanical performance of the composite were investigated. Results show that CNF can significantly improve the dispersion of rGO in the PDMS matrix, and help to form stable three-dimensional reinforcing and conductive networks, increasing the elastic modulus and conductivity of the composite. When the mass fractions of rGO and CNF in PDMS were 10% and 3%, respectively, the elastic modulus of the composite reached the maximum value of 2.53 MPa, with the electrical conductivity of 0.34 S/m. When the strain of the composite film was less than 10%, the relative variation of resistance was linear with the strain. The maximum sensitivity coefficient was 63, and the corresponding mass fractions of rGO and CNF were 10% and 3%, respectively. When the strain was more than 10%, the resistance varied exponentially. The electromechanical response mechanism of the composite was analyzed, and the composite was applied to the monitoring of fatigue cracks of materials or components. A film sensor of stress intensity factors was designed, and its feasibility was verified by theoretical analysis.



Key wordsreduced graphene oxide      cellulose nanofiber      polydimethylsiloxane      piezoresistive effect      film sensor     
Received: 26 May 2019      Published: 10 March 2020
CLC:  TU 599  
Corresponding Authors: Jun WEI     E-mail: 124801026@csu.edu.cn;juneweii@126.com
Cite this article:

Zhi-qiang WU,Jun WEI,Rong-zhen DONG. Graphene-based piezoresistive composite and application in crack monitoring. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 233-240.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.003     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/233


石墨烯压阻复合材料及其在裂纹监测中的应用

为了弥补现有柔性应变传感器在健康监测上的不足,以还原氧化石墨烯(rGO)为导电填料,纳米纤维素(CNF)为分散剂和结构骨架,硅橡胶(PDMS)为聚合物弹性基体,采用溶液共混和溶剂挥发法,制备具有压阻效应的弹性复合材料. 对复合材料进行微观结构、力学、电学和机敏性能分析,结果表明,CNF能有效协助rGO在PDMS基体中均匀分散,形成稳定的三维增强和导电网络,提高复合材料的弹性模量和电导率. 当rGO、CNF占PDMS的质量分数分别为10%、3%时,复合材料的弹性模量最大为2.53 MPa,电导率为0.34 S/m. 当复合材料薄膜应变小于10%时,电阻相对变化量与应变呈线性关系,灵敏系数最大为63,对应rGO、CNF的质量分数分别为10%、3%;当应变大于10%时,呈指数变化. 分析复合材料的力电响应机理,将复合材料应用于材料或构件疲劳裂纹的监测中,设计应力强度因子薄膜传感器,并通过理论分析验证其可行性.


关键词: 还原氧化石墨烯,  纳米纤维素,  硅橡胶,  压阻效应,  薄膜传感器 
Fig.1 Schematic diagram of preparation process of rGO-CNF/PDMS composite
Fig.2 Ultraviolet-visible absorption spectra of rGO and rGO-CNF suspension liquid
Fig.3 Comparison of rGO and rGO-CNF suspension liquid before and after standing
Fig.4 Microscopic morphology of rGO, CNF and rGO-CNF/PDMS
编号 w(rGO)/% w(CNF)/% 编号 w(rGO)/% w(CNF)/%
PDMS 0 0 B15/3 15 3
A5/0 5 0 B20/3 20 3
A10/0 10 0 C5/6 5 6
A15/0 15 0 C10/6 10 6
A20/0 20 0 C15/6 15 6
B5/3 5 3 C20/6 20 6
B10/3 10 3 ? ? ?
Tab.1 Mass fraction of rGO and CNF in PDMS of film samples
Fig.5 Elastic modulus of rGO-CNF/PDMS film samples of different groups
Fig.6 Electrical conductivity of rGO-CNF/PDMS film samples of different groups
Fig.7 Correlation of resistance change rate and strain of B10/3 and C20/6 film samples
Fig.8 Strain sensing properties of B10/3 film sample after repeated stretching
Fig.9 Correlation of resistance change rate and strain (<10%) of rGO-CNF/PDMS film samples
Fig.10 Film sensor of stress intensity factor
[1]   YANG H, CAO Y, HE J, et al Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices[J]. Carbon, 2017, 115: 561- 570
doi: 10.1016/j.carbon.2017.01.047
[2]   CHEN Z, REN W, GAO L, et al Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10 (6): 424- 428
doi: 10.1038/nmat3001
[3]   MA W, LIU Y, YAN S, et al Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties[J]. Nano Research, 2018, 11 (2): 741- 750
doi: 10.1007/s12274-017-1683-3
[4]   AKKACHAI P, KITTIPONG H, DARUNEE A, et al The effect of oxygen-plasma treated graphene nanoplatelets upon the properties of multiwalledcarbonnanotube and polycarbonate hybrid nanocomposites used for electrostatic dissipative applications[J]. Journal of Nanomaterials, 2015, 2015: 470297
[5]   TADAKALURU S, THONGSUWAN W, SINGJAI P Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber[J]. Sensors, 2014, 14 (1): 868- 876
doi: 10.3390/s140100868
[6]   LAGO E, TOTH P S, PUGLIESE G, et al Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties[J]. RSC Advances, 2016, 6: 97931- 97940
doi: 10.1039/C6RA21962D
[7]   LEELADHAR, RATURI P, SINGH J P Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators[J]. Scientific Reports, 2018, 8 (1): 3687
doi: 10.1038/s41598-018-21871-3
[8]   LIU Q, CHEN J, LI Y, et al High-performance strain sensors with fish scale-like graphene sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10 (8): 7901- 7906
doi: 10.1021/acsnano.6b03813
[9]   BURTON A, LYNCH J P, KURATA M, et al Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring[J]. Smart Materials and Structures, 2017, 26 (9): 095052
doi: 10.1088/1361-665X/aa8105
[10]   ULLAH Z, LI Q, WANG R, et al Graphene/Ag-NWs electrodes for highly transparent and extremely stretchable supercapacitor[J]. IEEE Transactions on Nanotechnology, 2018, 17 (1): 65- 68
doi: 10.1109/TNANO.2016.2634556
[11]   LIU Y, ZHANG D, WANG K, et al A novel strain sensor based on graphene composite films with layered structure[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 95- 103
doi: 10.1016/j.compositesa.2015.10.010
[12]   KIM K S, YUE Z, JANG H, et al Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457 (7230): 706- 710
doi: 10.1038/nature07719
[13]   YANG X, QIU L, CHENG C, et al Ordered gelation of chemically converted graphene for next-generation electro conductive hydrogel films[J]. Angewandte Chemie International Edition, 2011, 50 (32): 7325- 7328
doi: 10.1002/anie.201100723
[14]   ZHI M, HUANG W, SHI Q, et al Improving water dispersibility of non-covalent functionalized reduced graphene oxide with l-tryptophan via cleaning oxidative debris[J]. Journal of Materials Science: Materials in Electronics, 2016, 27 (7): 7361- 7368
doi: 10.1007/s10854-016-4708-x
[15]   LEUNG A, HTAPOVIC S, LAM E, et al Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure[J]. Small, 2011, 7 (3): 302- 305
doi: 10.1002/smll.201001715
[16]   CHENG M, QIN Z, CHEN Y, et al Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids[J]. Cellulose, 2017, 24 (8): 3243- 3254
doi: 10.1007/s10570-017-1339-1
[17]   LIU P, GUO X, NAN F, et al Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid[J]. ACS Applied Materials and Interfaces, 2017, 9 (3): 3085- 3092
doi: 10.1021/acsami.6b12953
[18]   韩景泉, 陆凯悦, 岳一莹, 等 纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能[J]. 新型炭材料, 2018, 33 (4): 61- 70
HAN Jing-quan, LU Kai-yue, YUE Yi-ying, et al Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes[J]. New Carbon Materials, 2018, 33 (4): 61- 70
[19]   KHALIL H, BHAT A, YUSRA A Green composites from sustainable cellulose nanofibrils: a review[J]. Carbohydrate Polymers, 2012, 87 (2): 963- 979
doi: 10.1016/j.carbpol.2011.08.078
[20]   中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T528-2009 [S]. 北京: 中国标准出版社, 2009.
[21]   CHEN L, CHEN G H, LU L Piezoresistive behavior study on finger-sensing silicone rubber/graphite nano sheetnanocom posites[J]. Advanced Functional Materials, 2007, 17 (6): 898- 904
doi: 10.1002/adfm.200600519
[22]   ZHAO J, HE C, YANG R, et al Ultra-sensitive strain sensors based on piezoresistive nanographene films[J]. Applied Physics Letters, 2012, 101 (6): 063112
doi: 10.1063/1.4742331
[23]   SIMMONS J G Incorporation of electric-field penetration of the electrodes in the theory of electron tunnelling through a dielectric layer[J]. British Journal of Applied Physics, 2002, 18 (3): 269
[24]   LU J R, WENG W G, CHEN X F, et al Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene[J]. Advanced Functional Materials, 2005, 15 (8): 1358- 1363
doi: 10.1002/adfm.200400298
No related articles found!