Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1199-1205    DOI: 10.3785/j.issn.1008-973X.2022.06.018
    
Relationship between morphology characteristics of CuCr2O4catalyst and its SCR denitrification activity
Er-hao GAO1,2(),Tian-yu SHOU2,3,Bei HUANG3,Wei WANG1,Yao SHI2
1. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
2. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
3. Zhejiang Feida Environmental Protection Technology Limited Company, Zhuji 311800, China
Download: HTML     PDF(1666KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The SCR denitrification activities of CuCr2O4 catalysts with various morphologies were tested and compared. The spinel-type CuCr2O4 catalysts with polyhedral, granular and spherical shapes were prepared, respectively. The results showed that polyhedral CuCr2O4 showed the best catalytic activity, with the de-NOx activity reaching 50% at 157 ℃ and maintaining above 99% at 225-320 ℃, and it exhibited good resistance against water vapor and SO2. The de-NOx activities follow the sequence of polyhedral CuCr2O4 > granular CuCr 2O4>spherical CuCr2O4. The effects of morphology on the denitrification performance of CuCr2O4 were analyzed by a series of characterization techniques. N2 sorption-desorption results showed that polyhedral CuCr2O4 had the highest specific surface area (25.5 m2/g) and the largest pore volume (0.154 cm3/g); X-ray photoelectron spectroscopy (XPS) results showed that polyhedral CuCr2O4 possessed the highest ratio of surface reactive oxygen species (49.5%) and Cu+(16.2%); NH3-programmed temperature desorption (NH3-TPD) showed that polyhedral CuCr2O4 had the highest surface acid concentration (0.12 mmol/g) and intensity; H2-programmed temperature reduction (H2-TPR) showed that polyhedral CuCr2O4 had the most reducible and abundant surface active species (3.69 mmol/g), which facilitated the SCR reaction in the low-temperature range. The enhanced surface acidity and redox properties of polyhedral CuCr2O4 makes it exhibit better de-NOx performance.



Key wordsCuCr2O4      spinel      morphology      SCR      denitrification performance      catalyst     
Received: 23 July 2021      Published: 30 June 2022
CLC:  X 511  
Fund:  江苏省自然科学基金资助项目(BK20210857);江苏省普通高校自然科学研究资助项目(21KJB610006);常州大学科研启动基金资助项目(ZMF21020016)
Cite this article:

Er-hao GAO,Tian-yu SHOU,Bei HUANG,Wei WANG,Yao SHI. Relationship between morphology characteristics of CuCr2O4catalyst and its SCR denitrification activity. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1199-1205.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.018     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1199


CuCr2O4催化剂形貌特征与其SCR脱硝性能的关系

分别制备形貌为多面体状、颗粒状、球状的尖晶石型CuCr2O4催化剂,测试对比不同形貌CuCr2O4催化剂的SCR脱硝性能. 结果表明,多面体状CuCr2O4的催化活性最好,且在157 ℃时脱硝效率达到50%,在225~320 ℃脱硝效率超过99%,具有良好的抗硫、抗水性能. 脱硝活性由大到小依次为多面体状CuCr2O4、颗粒状CuCr2O4、球状CuCr2O4. 采用表征技术分析微观形貌对CuCr2O4脱硝性能的影响. N2吸附-脱附结果显示,多面体状CuCr2O4具有最大的比表面积(25.5 m2/g)和最大的孔容积(0.154 cm3/g);X射线光电子能谱(XPS)结果显示,多面体状CuCr2O4相较于其他形貌拥有更高比例的表面活性氧(49.5%)和Cu+(16.2%);NH3-程序升温脱附(NH3-TPD)结果显示,多面体状CuCr2O4拥有最高表面酸浓度(0.12 mmol/g)及酸强度;H2-程序升温还原(H2-TPR)结果显示,多面体状CuCr2O4表面活性物种最易还原且数量最多(3.69 mmol/g),使得SCR反应在低温段更易进行. 多面体状CuCr2O4的高表面酸性与氧化还原性,使其具有良好的脱硝性能.


关键词: CuCr2O4,  尖晶石,  形貌,  SCR,  脱硝性能,  催化剂 
Fig.1 Denitrification efficiency for CuCr2O4 catalysts
Fig.2 N2O volume fraction and N2 selectivity over CuCr2O4 catalysts
Fig.3 Effects of SO2+H2O on denitrification activity for CuCr2O4 catalysts
Fig.4 Micro-morphology characteristics of CuCr2O4 catalysts
Fig.5 Particle size distribution of CuCr2O4 catalysts
Fig.6 N2 adsorption-desorption isotherms and BJH pore diameter distribution of CuCr2O4 catalysts
催化剂 S/(m2·g?1) d/nm V/(cm3·g?1)
CuCr2O4-P 25.5 10.9 0.154
CuCr2O4-G 21.8 11.5 0.146
CuCr2O4-S 16.7 10.4 0.098
Tab.1 Specific surface area, pore diameter, and pore volume of CuCr2O4 catalysts
Fig.7 XRD patterns for CuCr2O4 catalysts
催化剂 x/%
Cu O Cr Oα/(Oα+Oβ) Cu+/(Cu++Cu2+)
CuCr2O4-P 12.82 66.07 21.11 49.5 16.2
CuCr2O4-G 9.57 66.39 24.04 39.4 7.6
CuCr2O4-S 13.40 63.21 24.44 40.8 10.7
Tab.2 Surface elements molar fractions of CuCr2O4 catalysts
Fig.8 XPS spectra fitting results of O 1s and Cu 2p3/2 of CuCr2O4 catalysts
Fig.9 NH3-TPD profiles for CuCr2O4 catalysts
Fig.10 H2-TPR profiles for CuCr2O4 catalysts
[1]   中华人民共和国生态环境部. 2020中国生态环境状况公报 [R/OL]. (2021-05-26)[2021-6-25]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf.
[2]   LAI J, WACHS I E A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts [J]. ACS Catalysis, 2018, 8 (7): 6537- 6551
doi: 10.1021/acscatal.8b01357
[3]   刘怀平, 尹海滨, 熊尚超, 等 水泥炉窑中低温催化脱硝技术中试性能研究[J]. 中国环境科学, 2021, 41 (7): 3169- 3175
LIU Huai-ping, YIN Hai-bin, XIONG Shang-chao, et al A pilot scale study of low-temperature De-NOx in cement furnace [J]. Chinese Environmental Science, 2021, 41 (7): 3169- 3175
doi: 10.3969/j.issn.1000-6923.2021.07.019
[4]   PENG Y, WANG D, LI B, et al Impacts of Pb and SO2 poisoning on CeO2–WO3/TiO2–SiO2 SCR catalyst [J]. Environmental Science and Technology, 2017, 51 (20): 11943- 11949
doi: 10.1021/acs.est.7b03309
[5]   DAMMA D, ETTIREDDY P R, REDDY B M, et al A review of low temperature NH3-SCR for removal of NOx[J]. Catalysts, 2019, 9 (4): 349
doi: 10.3390/catal9040349
[6]   ZHAO Q, CHEN B, LI J, et al Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx[J]. Applied Catalysis B: Environmental, 2020, 277: 119215
doi: 10.1016/j.apcatb.2020.119215
[7]   SHI Y, TANG X, YI H, et al Controlled synthesis of spinel-type mesoporous Mn-Co rods for SCR of NOx with NH3 at low temperature [J]. Industrial and Engineering Chemistry Research, 2019, 58 (9): 3606
doi: 10.1021/acs.iecr.8b05223
[8]   MATHEW D S, JUANG R S An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions[J]. Chemical Engineering Journal, 2007, 129 (1/3): 51- 65
[9]   MATHEW T, SHIJU N R, SREEKUMAR K, et al Cu-Co synergism in Cu1-xCoxFe2O4 catalysis and XPS aspects [J]. Journal of Catalysis, 2002, 210 (2): 405- 417
doi: 10.1006/jcat.2002.3712
[10]   GAO E, SUN G, ZHANG W, et al Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1-xCr2O4 catalysts for enhanced NH3-SCR performance [J]. Chemical Engineering Journal, 2020, 380: 122397
doi: 10.1016/j.cej.2019.122397
[11]   GAO E, HUANG B, ZHAO Z, et al Understanding the co-effects of manganese and cobalt on the enhanced SCR performance for MnxCo1-xCr2O4 spinel-type catalysts [J]. Catalysis Science and Technology, 2020, 10 (14): 4752- 4765
doi: 10.1039/D0CY00872A
[12]   WANG D, JANGJOU Y, LIU Y, et al A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts [J]. Applied Catalysis B: Environmental, 2015, 165: 438- 445
doi: 10.1016/j.apcatb.2014.10.020
[13]   SMIRNIOTIS P G, PEÑA D A, UPHADE B S Low ‐temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2[J]. Angewandte Chemie International Edition, 2001, 40 (13): 2479- 2482
doi: 10.1002/1521-3773(20010702)40:13<2479::AID-ANIE2479>3.0.CO;2-7
[14]   ZHANG T, CHANG H, Li K, et al Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2018, 349: 184- 191
doi: 10.1016/j.cej.2018.05.049
[15]   LONG R Q, YANG R T Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst [J]. Journal of Catalysis, 2002, 207 (2): 224- 231
doi: 10.1006/jcat.2002.3528
[16]   HAN S, CHENG J, ZHENG C, et al Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust [J]. Applied Surface Science, 2017, 419: 382- 392
doi: 10.1016/j.apsusc.2017.04.198
[17]   XIONG S, PENG Y, WANG D, et al The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: improvement of low-temperature activity and sulfur resistance [J]. Chemical Engineering Journal, 2020, 387: 124090
doi: 10.1016/j.cej.2020.124090
[18]   WAN Y, ZHAO W, TANG Y, et al Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148/149: 114- 122
doi: 10.1016/j.apcatb.2013.10.049
[19]   PEÑA D A, UPHADE B S, SMIRNIOTIS P G TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals [J]. Journal of Catalysis, 2004, 221 (2): 421- 431
doi: 10.1016/j.jcat.2003.09.003
[20]   QIU M, ZHAN S, ZHU D, et al NH3-SCR performance improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures [J]. Catalysis Today, 2015, 258: 103- 111
doi: 10.1016/j.cattod.2015.03.049
[1] Xun ZHANG,Jian-sheng LI,Wen OUYANG,Run-ze CHEN,Zhen JI,Kai ZHENG. Efficient convolution operators integrating motion information and tracking evaluation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1135-1143, 1167.
[2] Yu TAO,Bo-rui ZHANG,Lei XU,Hong-lei TIAN,Ya-peng ZHANG,Qing-wen ZHANG. Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 674-682.
[3] Yan BIAN,Yu-sheng GONG,Guo-peng MA,Chang WANG. Water extraction from unmanned aerial vehicle remote sensing images[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 764-774.
[4] Xue-yun CHEN,Xiao-qiao HUANG,Li XIE. Classification and detection method of blood cells images based on multi-scale conditional generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1772-1781.
[5] Wen-tao LIU,Kun ZHAO,Jiu-gen WANG,Li SONG. Vibration measurement of ball screws used in automobile braking systems[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1529-1537.
[6] Zhe-he YAO,Cao-qi ZHANG,Qi-wei SONG,Xi-jiang LU,Jian-qiang KONG,Jian-hua YAO. Ultrasonic assisted laser repair of V-grooves in nickel-based superalloy[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 887-895.
[7] Hui XIONG,Zhao JING,Jin-zhen LIU. Structural design of novel three-layer figure-of-8 coil for transcranial magnetic stimulation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 793-800.
[8] Chao REN,Gao-wei YAN,Lan CHENG,Fang WANG. Transition mode identification method based on maximum mean discrepancy for multimode process[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 563-570.
[9] Jian ZHOU,Gang MA,Wei ZHOU,Yong-gang CHENG,Quan-shui HUANG,Xue-xing CAO. Statistical analysis of fragment shape of rock grain after crushing based on FDEM[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 348-357.
[10] Han KE,Sheng-ze LAN,Mei-lan ZHANG,Jie HU,Xing XU,Yun-min CHEN. Motion pattern of aged municipal solid waste in trommeland optimization of screening efficiency[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2323-2333.
[11] Guo-wen XIONG,Min ZHANG,Wen-xin XU. Vehicle routing optimization of two-echelon opening and closing hybrid based on crowdsourcing mode[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2397-2408.
[12] Rui-huan CAI,Yong-zhi ZHAO. Effect of screw structure on granular mixing in a double-screw conical mixer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2067-2075.
[13] Ke-lai YU,Zhen-jun YANG,Xin ZHANG,Guo-hua LIU,Hui LI. Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2151-2160.
[14] Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.
[15] Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1497-1504.