Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (12): 2323-2333    DOI: 10.3785/j.issn.1008-973X.2021.12.012
    
Motion pattern of aged municipal solid waste in trommeland optimization of screening efficiency
Han KE1,2(),Sheng-ze LAN1,2,Mei-lan ZHANG3,Jie HU1,2,*(),Xing XU1,2,Yun-min CHEN1,2
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Shanghai Laogang Waste Disposal Limited Company, Shanghai 201302, China
Download: HTML     PDF(1863KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The motion equation of municipal solid waste (MSW) in trommel was derived and solved numerically. The MSW motion pattern was divided into three categories according to the maximum position angle: cascade action, cataract action and circular action. The discriminant contour maps of the motion pattern under different rotating speed, radius and kinetic friction coefficient were given. The Trommel experiments indicate that the maximum position angle of the MSW motion increases first, and then stays stable with the increase of the rotating speed. The MSW enters circular action after the rotating speed reaches 50 r/min. The screening efficiency of trommel increases at first and then decreases with the increase of rotating speed, continues to increase with the increase of drop, and decreases with the increase of water mass fraction. The contour map of the optimal rotational speed with the trommel was given based on the experiment results. In specific projects, optimal rotating speed can be selected according to the kinetic friction coefficient of MSW and the trommel radius, and the water mass fraction should be reduced to improve the screening efficiency.



Key wordstrommel      motion pattern      maximum position angle      optimal rotational speed      screening efficiency     
Received: 02 January 2021      Published: 31 December 2021
CLC:  TU 411  
Fund:  国家重点研发计划资助项目(2019YFC1806000);国家自然科学基金资助项目(52108348);老港综合填埋场可持续填埋研究和工艺示范资助项目(2018-C/LG-104);中国博士后科学基金资助项目(2021M692836)
Corresponding Authors: Jie HU     E-mail: boske@126.com;hujie1993@zju.edu.cn
Cite this article:

Han KE,Sheng-ze LAN,Mei-lan ZHANG,Jie HU,Xing XU,Yun-min CHEN. Motion pattern of aged municipal solid waste in trommeland optimization of screening efficiency. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2323-2333.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.12.012     OR     https://www.zjujournals.com/eng/Y2021/V55/I12/2323


陈垃圾滚筒筛运动模式与筛分效率优化

推导陈垃圾在滚筒筛中的运动方程并求数值解,按最大位置角将陈垃圾运动模式划分成滚落、抛落、圆周运动,给出不同筛筒转速、半径、动摩擦因数下的运动模式判别云图. 滚筒筛试验结果显示,陈垃圾运动的最大位置角随转速的升高先增大后不变,转速超过50 r/min后垃圾进行圆周运动. 陈垃圾滚筒筛的筛分效率随转速增大呈先升后降的趋势,随抛落差的增大呈持续上升的趋势,随着原料水的质量分数的增加呈下降的趋势. 基于试验结果,给出滚筒筛最优转速取值云图,在实际工程中可根据垃圾动摩擦因数及滚筒半径选择最优转速,同时减小水的质量分数以提高筛分效率.


关键词: 滚筒筛,  运动模式,  最大位置角,  最优转速,  筛分效率 
运动模式 δmax/(°) nt/(r·min?1) 物料运动特点 η
滚落 [0, 90] 较低 物料在水平线之下滑动、
涌落,物料混合不充分,不易使中间层物料翻向筛孔
抛落 (90, 180) 足够高,但小于临界转速 物料先在圆周上提升,
越过一定高度后被
抛出,撞击筛面
得以分散
圆周 [180, 360] 大于临界转速 物料一直附在筒壁上,
内部相对运动少,
大部分细物料不易筛出
Tab.1 Motion characteristics of different motion patterns of materials in trommel
Fig.1 Three motion patterns of materials in trommel
Fig.2 Force analysis of material on trommel circumference
阶段 δ au aD aT vTs 运动控制方程
I 0°~δ0 μ (gcos δ+v2/R) gsin δ >0 0 x=F1(t)
II δ0~δ1 aS gsin δ 0 ntR x=xδ0+vδ0(t)
III >δ1 μ (gcos δ+v2/R) gsin δ <0 ntR x=F1(t)
Tab.2 Motion phase table when trommel rotational speed is not enough
Fig.3 Numerical solutions of MSW motion in standard case
Fig.4 Relationship between position angle and friction coefficient in standard case
Fig.5 Numerical solution of MSW motion when trommel rotational speed is not enough in general case
Fig.6 Contour map of maximum angle and motion pattern
Fig.7 Product photo of trommel
Fig.8 Particle size distribution of aged MSW
Fig.9 Recording method of maximum angle in laboratory tests
Fig.10 Screening material and products
Fig.11 Relation between maximum angle and trommel rotational speed
Fig.12 Relation between screening efficiency and trommel rotational speed
Fig.13 Relation between screening efficiency and drop function
Fig.14 Optimal rotational speed value of figure for trommel
Fig.15 Relation between screening efficiency and water mass fraction
[1]   陈云敏, 刘晓成, 徐文杰, 等 填埋生活垃圾稳定化特征与可开采性分析: 以我国第一代卫生填埋场为例[J]. 中国科学:技术科学, 2019, 49 (2): 199- 211
CHEN Yun-min, LIU Xiao-cheng, XU Wen-jie, et al Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste: case of a typical landfill in China[J]. Scientia Sinica: Technologica, 2019, 49 (2): 199- 211
doi: 10.1360/N092018-00140
[2]   中华人民共和国国家统计局. 国家数据: 年度数据[DB/OL]. [2020-12-13]. https://data.stats.gov.cn/easyquery.htm?cn=C01.
[3]   HOGLAND W Remediation of an old landsfill site[J]. Environmental Science and Pollution Research, 2002, 9: 49- 54
doi: 10.1007/BF02987426
[4]   KROOK J, BAAS L Getting serious about mining the technosphere: a review of recent landfill mining and urban mining research[J]. Journal of Cleaner Production, 2013, 55 (14): 1- 9
[5]   JAIN P, TOWNSEND T G, JOHNSON P Case study of landfill reclamation at a Florida landfill site[J]. Waste Management, 2013, 33 (1): 109- 116
doi: 10.1016/j.wasman.2012.09.011
[6]   FORSTER G A. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste [M]. Lancaster: National Renewable Energy Laboratory, 1995: 1-125.
[7]   ASHKIKI A R, FELSKE C, MCCARTNEY D Impacts of seasonal variation and operating parameters on double-stage trommel performance[J]. Waste Management, 2019, 86: 36- 48
doi: 10.1016/j.wasman.2019.01.026
[8]   赵先. 陈垃圾开采回用工程的综合效益评价研究[D]. 武汉: 华中科技大学, 2008: 1-51.
ZHAO Xian. A study on integrate-benefit evaluation of landfill mining project [D]. Wuhan: Huazhong University of Science and Technology, 2008: 1-51.
[9]   李兵, 赵由才, 施庆燕, 等 上海市生活垃圾分选模式研究[J]. 同济大学学报:自然科学版, 2007, (4): 507- 510
LI Bing, ZHAO You-cai, SHI Qing-yan, et al State-of-the-art separation mode for municipal solid wastes in Shanghai[J]. Journal of Tongji University: Natural Science, 2007, (4): 507- 510
doi: 10.3321/j.issn:0253-374X.2007.04.015
[10]   WHEELER P A, BARTON J R, NEW R An empirical approach to the design of trommel screens for fine screening of domestic refuse[J]. Resources, Conservation and Recycling, 1989, 2 (4): 261- 273
doi: 10.1016/0921-3449(89)90003-7
[11]   黄楚雨, 韩华, 康敏娟, 等 非正规垃圾堆放点垃圾质量及筛分产物比例精准勘测方法研究[J]. 环境卫生工程, 2020, 28 (5): 33- 37
HUANG Chu-yu, HAN Hua, KANG Min-juan, et al Accurate survey method study of waste quality and screening product proportion in informal waste dump sites[J]. Environmental Sanitation Engineering, 2020, 28 (5): 33- 37
[12]   ALTER H, GAVIS J, RENARD M L Design models of trommels for resource recovery processing[J]. Resources and Conservation, 1981, 6 (3/4): 223- 240
[13]   GLAUB J C, JONES D B, SAVAGE G M. Design and use of trommel screens for processing municipal solid waste [C]// Proceedings of ASME National Waste Processing Conference. New York: [s. n.], 1982: 447-457.
[14]   STESSEL R I A new trommel model[J]. Resources, Conservation and Recycling, 1991, 6 (1): 1- 22
doi: 10.1016/0921-3449(91)90002-6
[15]   MELLMANN J The transverse motion of solids in rotating cylinders: forms of motion and transition behavior[J]. Powder Technology, 2001, 118 (3): 251- 270
doi: 10.1016/S0032-5910(00)00402-2
[16]   唐红侠, 赵由才 滚筒筛筛分生活垃圾的理论研究[J]. 环境工程学报, 2007, (12): 124- 127
TANG Hong-xia, ZHAO You-cai Research on theories of the trommel screen separating municipal solid waste[J]. Chinese Journal of Environmental Engineering, 2007, (12): 124- 127
doi: 10.3969/j.issn.1673-9108.2007.12.026
[17]   李兵. 生活垃圾深度分选及设备优化组合技术研究[D]. 上海: 同济大学, 2006: 1-155.
LI Bing. Integrated mechanical separation and parameter optimization for municipal solid wastes [D]. Shanghai: Tongji University, 2006: 1-155.
[18]   张大卫. 用于粗煤泥脱水脱泥滚筒筛的研制及其性能试验研究[D]. 太原: 太原理工大学, 2015: 1-89.
ZHANG Da-wei. The development and study on the trommel screen used for dewatering and desliming of coal slime [D]. Taiyuan: Taiyuan University of Technology, 2015: 1-89.
[19]   肖嘉. 基于EEP法的线法二阶常微分方程组有限元自适应分析[D]. 北京: 清华大学, 2009: 1-152.
XIAO Jia. Adaptive FEM analysis of second order ODEs of FEMOL based on EEP super-convergent method [D]. Beijing: Tsinghua University, 2009: 1-152.
[20]   夏敦行. 二阶变系数线性微分方程的解法[D]. 武汉: 武汉科技大学, 2009: 1-37.
XIA Dun-xing. Solution of second order variable coefficients linear differential equation [D]. Wuhan: Wuhan University of Science and Technology, 2009: 1-37.
[21]   王冠, 霍丽丽, 赵立欣, 等 秸秆类生物质原料筛分除杂试验及滚筒筛改进[J]. 农业工程学报, 2016, 32 (13): 218- 222
WANG Guan, HUO Lili, ZHAO Lixin, et al Screening of biomass straw materials and improvement of feedstock equipment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (13): 218- 222
doi: 10.11975/j.issn.1002-6819.2016.13.031
[22]   TURES G L. A guide to implementing reclamation processes at department of defense municipal solid waste and construction debris landfills [D]. Montgomery: Air Force Institute of Technology, 2007: 1-81.
[23]   MÖNKÄRE T J, PALMROTH M R T, RINTALA J A Characterization of fine fraction mined from two Finnish landfills[J]. Waste Management, 2016, 47: 34- 39
doi: 10.1016/j.wasman.2015.02.034
[24]   张恩广. 筛分破碎及脱水设备 [M]. 北京: 煤炭工业出版社, 1989: 22-23.
[25]   煤炭部选煤设计研究院情报室. 选煤技术文集 分离效率[M]. 北京: 煤炭工业出版社, 1980: 27-111.
[26]   张钰. 煤泥脱水筛分滚筒筛性能试验研究与离散元模拟[D]. 太原: 太原理工大学, 2016: 1-68.
ZHANG Yu. Experimental study and discrete element simulation of coal slime dewatering sieving drum screen’s performance [D]. Taiyuan: Taiyuan University of Technology, 2016: 1-68.
[1] Jia MENG,Jun-chao LI,Yun-min CHEN. Strain-hardening mechanism and applicability in hypergravity simulation of municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 664-673.
[2] Wei YANG,Meng-jian REN,Ren-peng CHEN,Xue-ying LIU,Xin KANG. Salt resistance of modified bentonite in complex environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1885-1893.
[3] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[4] Yu ZHAO,Sheng CHANG,Jian-jing ZHENG,Dao-sheng LING,Teng LIANG. Analysis of raindrop trajectory in centrifuge-simulated hypergravity field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 491-499.
[5] Xiao-dong PAN,Lian-mo ZHOU,Hong-lei SUN,Yuan-qiang CAI,Li SHI,Zong-hao YUAN. Vacuum preloading test for high moisture content slurry using particle image velocimetry[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1078-1085.
[6] Can WANG,Dao-sheng LING,Heng-yu WANG. Influence of soft clay structure on pit excavation and adjacent tunnels[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 264-274.
[7] Dong-li LI,E-chuan YAN,Bin FENG,Yuan-qiang CAI. Impact of submarine debris flow on offshore piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2342-2347.
[8] Jian-feng ZHU,Qiu-shui TUO,Wen-ni DENG,Chun-yi RAO,Hao-xu LIU. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2168-2174.
[9] Dao-sheng LING,Jiang LI,Wen-jun WANG,Cheng-bao HU. Structure of artificial soils and its influence on strain localization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1689-1696.
[10] JIAO Wei guo, ZHAN Liang tong, LAN Ji wu, CHEN Yun min. Analysis of capillary barrier effect and design thickness with loess-gravel cover[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2128-2134.
[11] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[12] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 813-821.
[13] ZHANG Ru ru, ZHAO Yun, XU Wen jie,HUANG Bo,LING Dao sheng,HAN Li ming. Water gas migration analysis in runway subgrade soil under influence of temperature[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 822-830.
[14] ZENG Xing, ZHAN Liang tong, ZHONG xiao le, CHEN Yun min. Similarity of centrifuge modeling of chloride dispersion in low permeability clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 241-249.
[15] ZHENG Jian,LI Yu chao,CHEN Yun min. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 8-15.