Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2168-2174    DOI: 10.3785/j.issn.1008-973X.2019.11.015
Civil Engineering, Municipal Engineering     
Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent
Jian-feng ZHU1,2(),Qiu-shui TUO1,3,Wen-ni DENG4,Chun-yi RAO1,Hao-xu LIU1
1. Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
2. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023,China
3. Bridge Branch Zhejiang Provincial Transportation Engineering Construction Group Co. Ltd, Hangzhou 310051, China
4. School of Civil Engineering, Southeast University, Nanjing 211189, China
Download: HTML     PDF(1143KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to provide evaluation basis for the solidification effect of cured organic soil solidified by the magnesium cement complex curing agent in practical engineering, the unconfined compressive strength of the magnesium-cement cured soil (TZ18 cured soil) was taken as the evaluation index, and the influences of the mass fraction of organic matter, water and curing agent and the age on the unconfined compressive strength were investigated. Results showed that the unconfined compressive strength of the TZ18 cured soil decreased in quadratic function with the increase of organic matter mass fraction and reduced in power function with the increase of water mass fraction, whereas increased in power function with the increase of cured agent mass fraction and enhanced in natural logarithm function with the growth of age. Based on the above tested results, a forecast model of the comprehensive compressive strength of TZ18 cured organic soil was developed. Example analysis indicated that the proposed model can predict the unconfined compressive strength of TZ18 cured soil at any mass fraction of organic matter, water and curing agent as well as age.



Key wordsmagnesium cement curing agent      organic matter      mass fraction of water      age      unconfined compressive strength      forecast model     
Received: 16 September 2018      Published: 21 November 2019
CLC:  TU 411  
Cite this article:

Jian-feng ZHU,Qiu-shui TUO,Wen-ni DENG,Chun-yi RAO,Hao-xu LIU. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2168-2174.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.015     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2168


镁质水泥复合固化剂固化有机质土的抗压强度模型

为了给实际工程中镁质水泥复合固化剂对有机质土的加固效果提供评价依据,以镁质水泥固化土(TZ18固化土)的无侧限抗压强度作为评价指标,分别研究有机质、水、固化剂的质量分数以及龄期对无侧限抗压强度的影响规律. 结果表明:TZ18固化土的无侧限抗压强度随有机质质量分数的增加呈二次函数形式降低,随水和固化剂质量分数的增加分别呈幂函数形式降低和提高,随龄期的增加呈自然对数形式增长. 基于此规律,建立TZ18固化土的抗压强度预测模型. 算例分析表明,该模型能较好地预测任意有机质、水、固化剂的质量分数以及龄期下的TZ18固化土的无侧限抗压强度.


关键词: 镁质水泥固化剂,  有机质,  水的质量分数,  龄期,  无侧限抗压强度,  预测模型 
Fig.1 Physical map of soil for laboratory test
土样名称 wW/% γ/(kN·m–3 e wp/% wL/% Es1-2/MPa φ/(°) c/kPa
淤泥质黏土 43.6 17.6 1.16 21.4 35.8 1.84 3.84 4.37
Tab.1 Physical and mechanical properties of soil sample
材料名称 分子/结构式 规格 生产厂家
1)注:AR为分析纯试剂(analytical reagent)
腐殖酸 ? 农业级 江西萍乡红土地
七水硫酸镁 MgSO4·7H2O 农业级 广州林国化肥
轻烧氧化镁 MgO 工业级 辽宁海城菱镁矿
柠檬酸 C6H8O7 AR1) 上海国药集团
水玻璃 NaSiO3 AR 天津鼎盛鑫化工
熟料 ? 工业级 发电厂
硅灰 ? 工业级 发电厂
Tab.2 Test raw materials for unconfined compressive strength
Fig.2 Preparation of artificial organic soil and TZ18 cured soil
组别 影响因素 各因素配比方案 T
M-0 基准配比 wC=15%;wO=6%;wW=60% 7 d
M-1 wC 12%、15%、18%、20% 7 d
M-2 wO 0%、3%、6%、9% 7 d
M-3 wW 50%、60%、70%、80% 7 d
M-4 T 7 d、14 d、28 d、60 d ?
Tab.3 Test program of unconfined compressive strength of TZ18 cured soil
Fig.3 Variation of unconfined compressive strength of TZ18 cured soil (7 d) along with mass fraction of humic acid
Fig.4 Variation of unconfined compressive strength of TZ18 cured soil (7 d) along with mass fraction of water
Fig.5 Variation of unconfined compressive strength of TZ18 cured soil (7 d) along with mass fraction of curing agent
Fig.6 Variation of unconfined compressive strength of TZ18 cured soil along with age
Fig.7 Relationship between normalized unconfined compressive strength of TZ18 cured soil (7 d) and total cement-water ratio
Fig.8 Relationship between normalized mass fraction of humic acid and parameter A0
Fig.9 Relationship between normalized unconfined compressive strength of TZ18 cured soil and age
层号 土层名称 wW/% γ/(kN·m–3 e wp/% wL/% Es1-2/MPa φ/(°) c/kPa wO/%
3 淤泥质土 68.4 17.2 1.332 27.0 45.1 2.2 10.0 14.0 6.90
1a 淤泥质土 56.9 17.5 1.143 21.8 36.3 2.7 10.5 14.0 5.47
1 淤泥质土 41.1 17.9 1.003 20.5 32.7 2.8 11.5 17.0 3.97
Tab.4 Engineering indicators of test soil samples
组别 试验用土所在层号 实测值/kPa 理论值/kPa 相对误差/%
E-1 3 706.2 736.87 4.34
E-2 1a 950.9 971.75 2.19
E-3 1 1 563.2 1 522.37 –2.60
Tab.5 Comparison between measured and theoretical unconfined compressive strength (7 d) of TZ18 cured soil
[1]   丁建文, 张帅, 洪振舜, 等 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31 (9): 2817- 2822
DING Jian-wen, ZHANG Shuai, HONG Zhen-shun, et al Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31 (9): 2817- 2822
doi: 10.3969/j.issn.1000-7598.2010.09.021
[2]   徐日庆, 郭印, 刘增永 人工制备有机质固化土力学特性试验研究[J]. 浙江大学学报: 工学版, 2007, 41 (1): 109- 113
XU Ri-qing, GUO Yin, LIU Zeng-yong Experimental study on mechanical properties of stabilized artificial organic soil[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (1): 109- 113
[3]   庹秋水, 朱剑锋, 饶春义 固化有机质土的抗剪强度试验研究[J]. 泥沙研究, 2017, 42 (5): 70- 74
TUO Qiu-shui, ZHU Jian-feng, RAO Chun-yi Experimental study on shear strength of stabilized organic soil[J]. Journal of Sediment Research, 2017, 42 (5): 70- 74
[4]   TREMBLAY H, DUCHESNE J, LOCAT J, et al Influence of the nature of organic compounds on fine soil stabilization with cement[J]. Canadian Geotechnical Journal, 2002, 39 (3): 535- 546
doi: 10.1139/t02-002
[5]   郭印, 徐日庆, 邵允铖 淤泥质土的固化机理研究[J]. 浙江大学学报: 工学版, 2008, 42 (6): 1071- 1075
GUO Yin, XU Ri-qing, SHAO Yun-cheng Study on mechanism of muddy soil stabilization[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (6): 1071- 1075
[6]   朱伟, 曾科林, 张春雷 淤泥固化处理中有机物成分的影响[J]. 岩土力学, 2008, 29 (1): 33- 36
ZHU Wei, ZENG Ke-lin, ZHANG Chun-lei Influence of organic matter component on solidification of dredged sediment[J]. Rock and Soil Mechanics, 2008, 29 (1): 33- 36
doi: 10.3969/j.issn.1000-7598.2008.01.007
[7]   HARVEY O R, HARRIS J P, HERBERT B E Natural organic matter and the formation of calcium-silicate-hydrates in lime-stabilized smectites: a thermal analysis study[J]. Thermochimica Acta, 2010, 505 (1/2): 106- 113
[8]   程福周, 雷学文, 孟庆山, 等 水泥-水玻璃固化东湖淤泥的室内试验研究[J]. 人民长江, 2013, 44 (24): 45- 48
CHENG Fu-zhou, LEI Xue-wen, MENG Qing-shan, et al Indoor experiment study on solidification of lake silt by cement-sodium silicate[J]. Yangtze River, 2013, 44 (24): 45- 48
doi: 10.3969/j.issn.1001-4179.2013.24.013
[9]   简文彬, 张登, 黄春香 水泥-水玻璃固化软土的微观机理研究[J]. 岩土工程学报, 2013, 35 (增2): 632- 637
JIAN Wen-bin, ZHANG Deng, HUANG Chun-xiang Micromechanism of cement-sodium silicate- stabilized soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (增2): 632- 637
[10]   李兆恒. MgO-SiO2-H2O胶凝体系的反应机制及应用研究[D]. 广州: 华南理工大学, 2015.
LI Zhao-heng. Reaction mechanisms and application study of MgO-SiO2-H2O cementitious system [D]. Guangzhou: South China University of Technology, 2015.
[11]   钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1538- 1548
QIAN Chun-xiang, WANG An-hui, WANG Xin Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36 (6): 1538- 1548
[12]   庹秋水. 镁质水泥复合固化剂加固淤泥质土的试验研究[D]. 宁波: 宁波大学, 2018.
TUO Qiu-shui. Experimental study on curing muddy soil with magnesium cement composite curing agent [D]. Ningbo: Ningbo University, 2018.
[13]   汤怡新, 刘汉龙, 朱伟 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22 (5): 549- 554
TANG Yi-xin, LIU Han-long, ZHU Wei Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22 (5): 549- 554
doi: 10.3321/j.issn:1000-4548.2000.05.008
[14]   LEE F H, LEE Y, CHEW S H, et al Strength and modulus of marine clay-cement mixes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (2): 178- 186
doi: 10.1061/(ASCE)1090-0241(2005)131:2(178)
[15]   刘汉龙, 董金梅, 周云东, 等 聚苯乙烯轻质混合土物理力学特性的影响因素[J]. 岩土力学, 2005, 26 (3): 445- 449
LIU Han-long, DONG Jin-mei, ZHOU Yun-dong, et al Factors influencing on physico-mechanical properties of the light soil mixed polystyrene[J]. Rock and Soil Mechanics, 2005, 26 (3): 445- 449
doi: 10.3969/j.issn.1000-7598.2005.03.022
[16]   储诚富, 洪振舜, 刘松玉, 等 用似水灰比对水泥土无侧限抗压强度的预测[J]. 岩土力学, 2005, 26 (4): 645- 649
CHU Cheng-fu, HONG Zhen-shun, LIU Song-yu, et al Prediction of unconfined compressive strength of cemented soils with quasi-water-cement ratio[J]. Rock and Soil Mechanics, 2005, 26 (4): 645- 649
doi: 10.3969/j.issn.1000-7598.2005.04.030
[17]   张铁军, 洪振舜, 邓东升, 等 水泥固化粉质土的无侧限抗压强度预测[J]. 东南大学学报: 自然科学版, 2008, 38 (5): 839- 843
ZHANG Tie-jun, HONG Zhen-shun, DENG Dong-sheng, et al Predication method of unconfined compression strength for cemented silty soils[J]. Journal of Southeast University: Natural Science Edition, 2008, 38 (5): 839- 843
[18]   徐日庆, 李俊虎, 蔡承晟, 等 用固化剂GX08加固杭州海湖相软土的强度特性研究[J]. 岩土力学, 2014, 35 (6): 1528- 1533
XU Ri-qing, LI Jun-hu, CAI Cheng-sheng, et al Study of strength characteristics of stabilized soil by using stabilizing agent GX08 treating marine and lacustrine soft soil in Hangzhou[J]. Rock and Soil Mechanics, 2014, 35 (6): 1528- 1533
[19]   蔡光华. 活性氧化镁碳化加固软弱土的试验与应用研究[D]. 南京: 东南大学, 2017.
CAI Guang-hua. Experimental and application studies on soft soil carbonated and stabilized by reactive magnesia [D]. Nanjing: Southeast University, 2017.
[1] Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.
[2] Zhong CHEN,Xiao XU,Hai-wei WANG,Hong-hao LUO,Xuan CHEN. Optimization strategy for unloading power tasks in residential areas based on alternate edge nodes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 917-926.
[3] You-cai WAN,Lei ZHANG,Ming LI,Bin LIU,Yuan-gui MEI. Maximum dynamic equivalent leakage area while high-speed train passing through tunnels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 695-703.
[4] Qi ZHANG,Hong CHEN,Ji-biao ZHOU,Min ZHANG,Lin GUO,Ren-fa YANG. Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 720-726.
[5] Yu ZHAO,Sheng CHANG,Jian-jing ZHENG,Dao-sheng LING,Teng LIANG. Analysis of raindrop trajectory in centrifuge-simulated hypergravity field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 491-499.
[6] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[7] Zi-ye YONG,Ji-chang GUO,Chong-yi LI. weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 555-562.
[8] Gong CHEN,Chun-hua ZHENG,Xian-ming WENG,Baustani HAMEED,Hong-hao HU,Xiao-yu MA,Jing-qing LIU. Diagnosis of road drainage inlets’ abnormal condition using multi-hydrological data association analysis[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 55-61.
[9] Xi-ran ZHANG,Shao-kuan CHEN,Bo WANG,Shuang LIU,Zhuo WANG. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 20-30.
[10] Yang-bo CHEN,Guo-dong YI,Shu-you ZHANG. Surface warpage detection method based on point cloud feature comparison[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 81-88.
[11] Xin-yue LI,Shu-qin CHEN,Hong-liang LI,Yun-xiao LOU,Jia-he LI. Analysis of air-conditioning usage and energy consumption in campus teaching buildings with data mining[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1677-1689.
[12] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[13] Qi SHEN,Yan ZHAO,Xiao-wei ZHOU,Xiao-ran YUAN. Image Hashing algorithm based on structure and gradient[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1525-1533.
[14] Wang-yu REN,Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN. MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1628-1636.
[15] Zhuang KANG,Jie YANG,Hao-qi GUO. Automatic garbage classification system based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1272-1280.