Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 81-88    DOI: 10.3785/j.issn.1008-973X.2021.01.010
    
Surface warpage detection method based on point cloud feature comparison
Yang-bo CHEN(),Guo-dong YI*(),Shu-you ZHANG
State Key Laboratory of Fluid Power and Electromechanical Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1754KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A description method of free-form surface warpage was defined aiming at the problems of insufficient description and low detection efficiency of surface warpage, and a detection method of surface warpage based on point cloud feature comparison was proposed. A series of algorithms were analyzed. The surface single-layer point cloud was extracted, and the warpage deformation area was obtained by comparing the spatial position of the measured point cloud and the template point cloud of the surface. Then the warpage distance and the warpage angle were calculated to describe the deformation degree and variation trend of the surface warpage. The results of the example analysis show that the proposed method directly analyzes the surface warpage through the comparison of point cloud features without performing surface reconstruction, which ensures the great accuracy and is more efficient than the three-dimensional reconstruction method in detecting the warpage.



Key wordssurface      injection molded part      warpage      point cloud      defect detection     
Received: 30 July 2020      Published: 05 January 2021
CLC:  TP 391  
Corresponding Authors: Guo-dong YI     E-mail: 21925190@zju.edu.cn;ygd@zju.edu.cn
Cite this article:

Yang-bo CHEN,Guo-dong YI,Shu-you ZHANG. Surface warpage detection method based on point cloud feature comparison. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 81-88.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.010     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/81


基于点云特征对比的曲面翘曲变形检测方法

针对目前曲面翘曲变形描述不充分、检测效率低的问题,定义自由曲面的翘曲变形描述方式,提出基于点云特征对比的曲面翘曲变形检测方法. 研究一系列算法,开展曲面单层点云提取,通过对比曲面实测点云与模板点云的空间位置获取翘曲变形区域;通过计算获得翘曲距离和翘曲张角,描述翘曲的变形程度和变化趋势. 实例分析结果表明,提出的方法不需要进行曲面重建,直接通过点云特征对比进行曲面翘曲变形分析,在保证精度的同时,在效率上比三维重建方法检测翘曲有了较大的提高.


关键词: 曲面,  注塑件,  翘曲变形,  点云,  缺陷检测 
Fig.1 Description of warpage at any point on surface
Fig.2 Point cloud description of surface warpage
Fig.3 Process of warpage detection
Fig.4 Impeller physical image and standard model image
Fig.5 Impeller raw point cloud data
Fig.6 Result of single-layer surface point cloud extraction
Fig.7 Results of hazardous area detection
Fig.8 Results of point cloud segmentation
Fig.9 Result of point cloud cluster matching
翘曲变形区域 边界点坐标 $d/{\rm{mm}}$ $\alpha /$(°)
区域1 (228.4,21.6,61.7) 2.021 8.95
区域1 (227.4,21.7,62.5) 1.983 10.75
区域1 (227.9,21.7,61.8) 1.978 5.06
区域1 (227.5,21.7,61.9) 1.971 5.60
区域1 (244.0,20.7,92.6) 1.958 12.78
区域1 (244.5,20.7,92.4) 1.957 12.83
区域1 (227.5,21.7,61.3) 1.944 3.77
区域1 (229.0,21.6,63.7) 1.943 4.89
区域2 (85.9,17.9,58.1) 1.628 5.43
区域2 (86.8,17.9,57.0) 1.592 3.47
区域2 (86.8,17.9,57.5) 1.573 3.54
区域2 (90.9,17.6,54.0) 1.570 4.35
区域2 (86.8,17.9,57.5) 1.570 3.54
区域2 (87.1,17.9,57.4) 1.567 3.54
区域2 (86.6,17.9,57.9) 1.562 3.53
区域2 (85.3,18.0,58.9) 1.559 3.54
Tab.1 Result of surface warpage description
Fig.10 Warping distance of boundary points
Fig.11 Line chart of warpage description
Fig.12 Results of three-dimensional surface reconstruction
[1]   郭志英, 李德群. 注塑制品翘曲变形的研究[J]. 塑料科技, 2001(1): 22-24.
GUO Zhi-ying, LI De-qun. Research in warped deformation of injected part [J]. Plastics Science and Technology, 2001(1): 22-24.
[2]   李吉泉, 李德群, 郭志英 塑件翘曲度及其计算方法[J]. 高分子材料科学与工程, 2008, 24 (6): 1- 4
LI Ji-quan, LI De-qun, GUO Zhi-ying The warpage degree of injection-molded parts and evaluation methods[J]. Polymer Materials Science and Engineering, 2008, 24 (6): 1- 4
doi: 10.3321/j.issn:1000-7555.2008.06.001
[3]   秦大同, 谢里阳. 现代机械设计手册: 第1卷[M]. 北京: 化学工程出版社, 2011.
[4]   张弛. 检具测量与三坐标测量的关系[J]. 科学与信息化, 2018(8): 102-105.
ZHANG Chi. The relationship between gage measurement and three-coordinate measurement [J]. Technology and Information, 2018(8): 102-105.
[5]   HIRAI K, IRIE D, HORIUCHI T. Photometric and geometric measurements based on multi-primary image projector [C]// 2015 Colour and Visual Computing Symposium. Gjovik, Norway: IEEE, 2015: 1-5.
[6]   JIANG Z H, ZHANG W J, CUI L Z Research of three dimensional laser scanning coordinate measuring machine[J]. MATEC Web of Conferences, 2018, 232: 02015
doi: 10.1051/matecconf/201823202015
[7]   CHEN J, WU X J, WANG M Y, et al 3D shape modeling using a self-developed hand-held 3D laser scanner and an efficient HT-ICP point cloud registration algorithm[J]. Optics and Laser Technology, 2013, 45 (1): 414- 423
[8]   LYU Y Z, GUO M, SHA O, et al 3D point cloud surface reconstruction based on divide-and-conquer method in laser scanner[J]. Journal of Physics, 2020, 1544 (1): 012118
[9]   SHAN D R, XU J C. Research on dimensional measurement method of large parts [C]// Proceedings of the 2nd International Conference on Information Technologies and Electrical Engineering. New York: ACM, 2019: 1–5.
[10]   吴庆华. 基于线结构光扫描的三维表面缺陷在线检测的理论与应用研究[D]. 武汉: 华中科技大学, 2013.
WU Qing-hua. Study on theory and application of 3d surface defect on-line detecting based on line-structured laser scanning [D]. Wuhan: Huazhong University of Science and Technology, 2013.
[11]   JOVAN?EVI? I, PHAM H, ORTEU J, et al 3D point cloud analysis for detection and characterization of defects on airplane exterior surface[J]. Journal of Nondestruct Eval, 2017, 36 (4): 74
doi: 10.1007/s10921-017-0453-1
[12]   赵鹏, 赵匀, 陈广胜 基于3D扫描技术的木材缺陷定量化分析[J]. 农业工程学报, 2017, 33 (7): 171- 176
ZHAO Peng, ZHAO Yun, CHEN Guang-sheng Quantitative analysis of wood defect based on 3D scanning technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (7): 171- 176
doi: 10.11975/j.issn.1002-6819.2017.07.022
[13]   吴梅君. 基于散乱点云的烟盒结构光视觉检测系统设计与研究[D]. 南京: 南京理工大学, 2013.
WU Mei-jun. Design and research of cigarette case structured light visual inspection system based on scattered point cloud [D]. Nanjing: Nanjing University of Science and Technology, 2013.
[14]   王颖, 吴峰, 付国平 基于散乱三维点云的缺陷检测和三维重构方法[J]. 应用光学, 2016, 37 (3): 402- 406
WANG Ying, WU Feng, FU Guo-ping Method for defects detection and 3D reconstruction based on dispersed points cloud[J]. Journal of Applied Optics, 2016, 37 (3): 402- 406
doi: 10.5768/JAO201637.0303001
[15]   SIMLER C, BERNDT D, TEUTSCH C. Bimodal model-based 3D vision and defect detection for free-form surface inspection [C]// International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Porto, Portugal: Science and Technology Publications, 2017: 451-458.
[16]   WEI C L, ZHOU Z Y, DAI Y K. An efficient algorithm for defect reconstruction from 3D point cloud [C]// 10th International Conference on Graphics and Image Processing. Chengdu: SPIE, 2019: 78.
[17]   RADU B R. Semantic 3D object maps for everyday manipulation in human living environments [D]. Munich: Technische Universitaet Muenchen, 2009.
[18]   陈向阳, 杨洋. 欧氏聚类算法支持下的点云数据分割[J]. 测绘通报, 2017(11): 27-31.
CHEN Xiang-yang, YANG Yang. Point cloud data segmentation supported by Euclidean clustering algorithm [J]. Surveying and Mapping Bulletin, 2017(11): 27-31.
[19]   DONALD M Geometric modeling using octree encoding[J]. Computer Graphics and Image Processing, 1982, 12 (19): 129- 147
[20]   孙殿柱, 范志先, 李延瑞. 散乱数据点云边界特征自动提取算法[J]. 华中科技大学学报: 自然科学版, 2008(8): 82-84.
SUN Dian-zhu, FAN Zhi-xian, LI Yan-rui. Automatic extraction of boundary characteristic from scatter data [J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2008(8): 82-84.
[21]   RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration [C]// IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 3212-3217.
[1] Ding-hua HU,Shi-yu LIU. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 991-998.
[2] Jun CAI,Gang ZHAO,Yong YU,Qiang-wei BAO,Sheng DAI. A rapid reconstruction method of simulation model based on point cloud and design model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 905-916.
[3] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[4] Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.
[5] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[6] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[7] Bang-huang CAI,Hui-min SONG,Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1839-1848.
[8] Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.
[9] Yi-xiong FENG,Kang-jie LI,Yi-cong GAO,Hao ZHEN,Jian-rong TAN. Shaft surface defect detection method based on feature and morphology reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 427-434.
[10] Bing YANG,Wen-bo MO,Jin-liang YAO. 3D palmprint recognition by using local features and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 540-545.
[11] Hao ZHOU,Zi-xian BAI,Zhen-huan CHEN,Jia-kai ZHANG. Characteristics of ash deposition growth in mixed atmosphere of NH3 and SO3[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 389-397.
[12] Song CHENG,Zong-feng ZOU. Optimization and experiment of heliostat surface shape bracing structure based on plane truss[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2310-2320.
[13] Gang YE,Yi-bo LI,Zhu-xi MA,Jie CHENG. End-to-end aluminum strip surface defects detection and recognition method based on ViBe[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1906-1914.
[14] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[15] Zhi-hao CHENG,Xiang PAN,San-yuan ZHANG,Ya-nan REN. Three-dimensional dynamic surface alignment based on isometric random walk graph[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 135-142.